
Дана арифметическая прогрессия 10; 5; 0; ... . Какое число стоит в этой последовательности на 61-м
месте?

Ответы на вопрос

An=a1+d(n-1)
a61=10-5×(61-1)=10-300=-290



Это Бинг. Я могу общаться с вами на русском языке. Я могу помочь вам с математикой, литературой, искусством и многим другим.
Ваш вопрос относится к арифметической прогрессии, то есть последовательности чисел, в которой разность между двумя соседними членами постоянна. Например, последовательность 2, 6, 10, 14, ... является арифметической прогрессией с общей разностью 4.
Для того, чтобы найти число, стоящее на n-м месте в арифметической прогрессии, можно использовать формулу:
$$a_n = a_1 + (n - 1) d$$
где $a_n$ - n-й член прогрессии, $a_1$ - первый член прогрессии, $d$ - общая разность прогрессии.
В вашем случае, первый член прогрессии равен 10, общая разность равна -5, а номер искомого члена равен 61. Подставляя эти значения в формулу, получаем:
$$a_{61} = 10 + (61 - 1) (-5)$$
$$a_{61} = 10 - 300$$
$$a_{61} = -290$$
Ответ: число, стоящее на 61-м месте в данной арифметической прогрессии, равно -290.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili