Вопрос задан 14.02.2019 в 18:51. Предмет Алгебра. Спрашивает Вацюта Оля.

9 человек выполнили работу за 12 дней при 7 и часовом рабочем дне,За сколько дней выполнят ту же

работу 10 рабочих при 10 часовом рабочем дне, если производительность труда повысится на 20%
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федоткина Маргарита.

9*7=63(ч) - 9 человек за 1 день(7 часов)
63*12=756(ч) - затрачено на данную работу

10*10=100(ч) - 10 человек за 1 раб день(10 часов)
100*1,2=120(ч) - после повышения производительности
756/120= 6,3 (дней)

 

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that 9 people completed a task in 12 days, working 7 hours per day. We need to determine how many days it will take for 10 people to complete the same task, working 10 hours per day, assuming a 20% increase in productivity.

Solution

To solve this problem, we can use the concept of person-hours. The total person-hours required to complete the task remains the same, regardless of the number of people or hours worked per day. We can calculate the total person-hours required for the task using the given information and then determine the number of days needed for 10 people working 10 hours per day.

Let's break down the solution into steps:

1. Calculate the total person-hours required to complete the task with 9 people working 7 hours per day for 12 days. 2. Determine the productivity increase percentage. 3. Calculate the new total person-hours required with the increased productivity. 4. Calculate the number of days needed for 10 people working 10 hours per day to complete the task using the new total person-hours.

Step 1: Calculate the total person-hours required

To calculate the total person-hours required, we can multiply the number of people by the number of hours worked per day and then multiply it by the number of days:

Total person-hours = Number of people * Number of hours per day * Number of days

Given: - Number of people = 9 - Number of hours per day = 7 - Number of days = 12

Total person-hours required = 9 * 7 * 12 = 756 person-hours

Step 2: Determine the productivity increase percentage

Given that the productivity will increase by 20%, we can calculate the new productivity increase factor:

Productivity increase factor = 1 + (Productivity increase percentage / 100)

Given: - Productivity increase percentage = 20%

Productivity increase factor = 1 + (20 / 100) = 1.2

Step 3: Calculate the new total person-hours required

To calculate the new total person-hours required, we can multiply the original total person-hours by the productivity increase factor:

New total person-hours required = Total person-hours * Productivity increase factor

Given: - Total person-hours = 756 person-hours - Productivity increase factor = 1.2

New total person-hours required = 756 * 1.2 = 907.2 person-hours

Step 4: Calculate the number of days needed for 10 people working 10 hours per day

To calculate the number of days needed, we can divide the new total person-hours required by the product of the number of people and the number of hours worked per day:

Number of days = New total person-hours required / (Number of people * Number of hours per day)

Given: - Number of people = 10 - Number of hours per day = 10 - New total person-hours required = 907.2 person-hours

Number of days = 907.2 / (10 * 10) = 9.072 days

Therefore, it will take approximately 9.072 days for 10 people working 10 hours per day to complete the same task, assuming a 20% increase in productivity.

Answer

It will take approximately 9.072 days for 10 people working 10 hours per day to complete the same task, assuming a 20% increase in productivity

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос