
Вопрос задан 13.02.2019 в 15:47.
Предмет Алгебра.
Спрашивает Тумаш Валерия.
Найдите наибольшее значение функции у=6cosx -6x+4 на отрезке [0,3п/2]


Ответы на вопрос

Отвечает Гукова Наташа.
Решение
Находим первую производную функции:
y' = - 6sin(x) - 6
Приравниваем ее к нулю:
- 6sin(x) - 6 = 0
x₁ = -1,571
Вычисляем значения функции
f(-1,571) = 13,425
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = - 6cos(x)
Вычисляем:
y''(-1,571) = -6 * (0,9996..) < 0 - значит точка x = -1.571 точка максимума функции.
Находим первую производную функции:
y' = - 6sin(x) - 6
Приравниваем ее к нулю:
- 6sin(x) - 6 = 0
x₁ = -1,571
Вычисляем значения функции
f(-1,571) = 13,425
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = - 6cos(x)
Вычисляем:
y''(-1,571) = -6 * (0,9996..) < 0 - значит точка x = -1.571 точка максимума функции.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili