Вопрос задан 28.12.2018 в 15:30. Предмет Алгебра. Спрашивает Захарова Ольга.

Изобразите схематично график функции и укажите для этой функции y=Lg(4-2x) а)область определения

б)множество(область) значений в)промежутки убывания и возрастания г)координаты точек пересечения с осями Ox и Oy д)наименьшее и наибольшее значение
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Билан Владимир.
График функции выглядит таким образом (см. вложение).

Область определения. поскольку выражение под логарифмом должно быть \ \textgreater \ 0, то область определения следующая:D(f)\in(-\infty;2).

Область значений. E(f) \in (-\infty; +\infty)..

Промежуток убывания. функция непрерывно убывает на всей области определения: (-\infty; +\infty).

Нули функции. функция обнуляется в точке (1.5,0).

Точка пересечения графика с осью ординат. (0; log_{10}4).

Точки максимума. их нет, поскольку нет ни одной точки перегиба функции.
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос