
Помогите с уравнениями: а) 2х^2+9х+4=0; b) одна шестая х^2- тринадцать х шестых + 7=0; в)
19х2-76=0; г) две целых одна третья х^2- три одна вторая х= 0; где письмено писал это дробью надо записать

Ответы на вопрос

D= 81-32=49=7^2;
x1= -4; x2= - 1/2.
б) x^2/6 + 13x /6 + 7=0; /*6;
x^2 +13x +42 =0;
D=169-168=1=1^2;
x1= - 7; x2 = - 6.
в) 19x^2 =76;
x^2 =4;
x1= -2; x2 =2.
г) 7x^2 /3 - 7x /2 =0; /*6;
14x^2 - 21x=0;
x(14x -21)=0;
x1=0; x2=1,5



Solving Equations:
Let's solve the given equations step by step:a) 2x^2 + 9x + 4 = 0
b) (1/6)x^2 - 13x + (7/6) = 0
c) 19x^2 - 76 = 0
d) (2 + 1/3)x^2 - (3 + 1/2)x = 0
Solution:
a) To solve the equation 2x^2 + 9x + 4 = 0, we can use the quadratic formula:x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 2, b = 9, and c = 4. Plugging these values into the quadratic formula, we get:
x = (-9 ± √(9^2 - 4 * 2 * 4)) / (2 * 2)
Simplifying further:
x = (-9 ± √(81 - 32)) / 4
x = (-9 ± √49) / 4
x = (-9 ± 7) / 4
So, the solutions to the equation 2x^2 + 9x + 4 = 0 are:
x = (-9 + 7) / 4 = -1/2
x = (-9 - 7) / 4 = -4
b) To solve the equation (1/6)x^2 - 13x + (7/6) = 0, we can multiply the entire equation by 6 to eliminate the fractions:
x^2 - 78x + 7 = 0
Unfortunately, this equation does not factor easily. We can use the quadratic formula to find the solutions:
x = (-(-78) ± √((-78)^2 - 4 * 1 * 7)) / (2 * 1)
Simplifying further:
x = (78 ± √(6084 - 28)) / 2
x = (78 ± √6056) / 2
x = (78 ± 77.85) / 2
So, the solutions to the equation (1/6)x^2 - 13x + (7/6) = 0 are approximately:
x ≈ 0.15
x ≈ 77.85
c) To solve the equation 19x^2 - 76 = 0, we can rearrange the equation to isolate x:
19x^2 = 76
x^2 = 76/19
Taking the square root of both sides:
x = ±√(76/19)
Simplifying further:
x = ±√(4) ≈ ±2
So, the solutions to the equation 19x^2 - 76 = 0 are:
x ≈ 2
x ≈ -2
d) To solve the equation (2 + 1/3)x^2 - (3 + 1/2)x = 0, we can multiply the entire equation by 6 to eliminate the fractions:
6(2 + 1/3)x^2 - 6(3 + 1/2)x = 0
Simplifying further:
6(2 + 1/3)x^2 - 6(3 + 1/2)x = 0
18x^2 - 36x - 9x + 18 = 0
18x^2 - 45x + 18 = 0
Unfortunately, this equation does not factor easily. We can use the quadratic formula to find the solutions:
x = (-(-45) ± √((-45)^2 - 4 * 18 * 18)) / (2 * 18)
Simplifying further:
x = (45 ± √(2025 - 1296)) / 36
x = (45 ± √729) / 36
x = (45 ± 27) / 36
So, the solutions to the equation (2 + 1/3)x^2 - (3 + 1/2)x = 0 are:
x = (45 + 27) / 36 = 4/3
x = (45 - 27) / 36 = 6/3 = 2
Therefore, the solutions to the given equations are as follows:
a) 2x^2 + 9x + 4 = 0: - x = -1/2 - x = -4
b) (1/6)x^2 - 13x + (7/6) = 0: - x ≈ 0.15 - x ≈ 77.85
c) 19x^2 - 76 = 0: - x ≈ 2 - x ≈ -2
d) (2 + 1/3)x^2 - (3 + 1/2)x = 0: - x = 4/3 - x = 2


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili