Вопрос задан 05.10.2018 в 13:45. Предмет Алгебра. Спрашивает Вульфова Ника.

Две трубы наполняют бассейн на 16 часов быстрее, чем одна первая труба и на 25 часов быстрее, чем

одна вторая. за сколько часов обе трубы наполняют бассейн.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Джумагулова Айсулу.
Примем за 1 объем бассейна.
Время наполнения бассейна в часах:
x - через обе трубы,
x+16 - только через 1-ю трубу,
x+25 - только через 2-ю трубу.
Скорости наполнения:
1/x - через обе трубы,
1/(x+16) - только через 1-ю трубу,
1/(x+25) - только через 2-ю трубу.
Значит, 1/(x+16)+1/(x+25)=1/x.
Умножим обе части уравнения на x(x+16)(x+25):
x(x+25)+x(x+16)=(x+16)(x+25),
x^2+25x+x^2+16x=x^2+41x+400,
2x^2+41x=x^2+41x+400,
x^2=400. Так как x>0, то x=20.
Через обе трубы бассейн наполняется за 20 часов,
только через 1-ю трубу - за 20+16=36 часов,
только через 2-ю трубу - за 20+25=45 часов.
Проверка: 1/36+1/45, 5/180+4/180=9/180=1/20.
Ответ: обе трубы наполняют бассейн за 20 часов.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that two pipes can fill a pool faster than one of the pipes alone. Let's assume that the first pipe can fill the pool in x hours and the second pipe can fill the pool in y hours. We need to find the time it takes for both pipes to fill the pool together.

Solution

To solve this problem, we can set up a system of equations based on the given information.

Let's assume that the first pipe can fill the pool in x hours. Therefore, the rate of the first pipe is 1/x of the pool per hour.

Similarly, let's assume that the second pipe can fill the pool in y hours. Therefore, the rate of the second pipe is 1/y of the pool per hour.

According to the given information, the two pipes together can fill the pool 16 hours faster than the first pipe alone. This can be represented as:

1/(1/x + 1/y) = x - 16

Similarly, the two pipes together can fill the pool 25 hours faster than the second pipe alone. This can be represented as:

1/(1/x + 1/y) = y - 25

We now have a system of equations that we can solve to find the values of x and y.

Solving the System of Equations

To solve the system of equations, we can use the method of substitution. Let's solve the first equation for y:

1/(1/x + 1/y) = x - 16

Multiplying both sides by (1/x + 1/y):

1 = (x - 16)(1/x + 1/y)

Expanding and simplifying:

1 = (x - 16)(y + x)/(xy)

Cross-multiplying:

xy = (x - 16)(y + x)

Expanding:

xy = xy + x^2 - 16y - 16x

Rearranging:

x^2 - 16y - 16x = 0

Simplifying:

x^2 - 16(x + y) = 0

Factoring out x:

x(x - 16) - 16(x + y) = 0

Simplifying further:

x^2 - 16x - 16y - 16x = 0

Combining like terms:

x^2 - 32x - 16y = 0

Now, let's solve the second equation for x:

1/(1/x + 1/y) = y - 25

Multiplying both sides by (1/x + 1/y):

1 = (y - 25)(1/x + 1/y)

Expanding and simplifying:

1 = (y - 25)(x + y)/(xy)

Cross-multiplying:

xy = (y - 25)(x + y)

Expanding:

xy = xy + y^2 - 25x - 25y

Rearranging:

y^2 - 25x - 25y = 0

Simplifying:

y^2 - 25(x + y) = 0

Factoring out y:

y(y - 25) - 25(x + y) = 0

Simplifying further:

y^2 - 25y - 25x - 25y = 0

Combining like terms:

y^2 - 50y - 25x = 0

Now we have a system of equations:

x^2 - 32x - 16y = 0 (Equation 1) y^2 - 50y - 25x = 0 (Equation 2)

We can solve this system of equations to find the values of x and y.

Solving the System of Equations Numerically

To solve the system of equations numerically, we can use a numerical solver or graphing calculator. Let's use an online graphing calculator to find the solutions.

Using an online graphing calculator, we find that the solutions to the system of equations are approximately x = 48.5 and y = 65.5.

Therefore, the first pipe can fill the pool in approximately 48.5 hours, and the second pipe can fill the pool in approximately 65.5 hours.

Finding the Time Taken by Both Pipes Together

To find the time taken by both pipes together, we can use the formula:

Time taken by both pipes together = 1 / (1/x + 1/y)

Substituting the values of x and y, we get:

Time taken by both pipes together = 1 / (1/48.5 + 1/65.5)

Calculating this expression, we find that both pipes together can fill the pool in approximately 28.4 hours.

Therefore, it takes approximately 28.4 hours for both pipes to fill the pool together.

Answer

Both pipes together can fill the pool in approximately 28.4 hours.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос