
Две трубы наполняют бассейн на 16 часов быстрее, чем одна первая труба и на 25 часов быстрее, чем
одна вторая. за сколько часов обе трубы наполняют бассейн.

Ответы на вопрос

Время наполнения бассейна в часах:
x - через обе трубы,
x+16 - только через 1-ю трубу,
x+25 - только через 2-ю трубу.
Скорости наполнения:
1/x - через обе трубы,
1/(x+16) - только через 1-ю трубу,
1/(x+25) - только через 2-ю трубу.
Значит, 1/(x+16)+1/(x+25)=1/x.
Умножим обе части уравнения на x(x+16)(x+25):
x(x+25)+x(x+16)=(x+16)(x+25),
x^2+25x+x^2+16x=x^2+41x+400,
2x^2+41x=x^2+41x+400,
x^2=400. Так как x>0, то x=20.
Через обе трубы бассейн наполняется за 20 часов,
только через 1-ю трубу - за 20+16=36 часов,
только через 2-ю трубу - за 20+25=45 часов.
Проверка: 1/36+1/45, 5/180+4/180=9/180=1/20.
Ответ: обе трубы наполняют бассейн за 20 часов.



Problem Analysis
We are given that two pipes can fill a pool faster than one of the pipes alone. Let's assume that the first pipe can fill the pool in x hours and the second pipe can fill the pool in y hours. We need to find the time it takes for both pipes to fill the pool together.Solution
To solve this problem, we can set up a system of equations based on the given information.Let's assume that the first pipe can fill the pool in x hours. Therefore, the rate of the first pipe is 1/x of the pool per hour.
Similarly, let's assume that the second pipe can fill the pool in y hours. Therefore, the rate of the second pipe is 1/y of the pool per hour.
According to the given information, the two pipes together can fill the pool 16 hours faster than the first pipe alone. This can be represented as:
1/(1/x + 1/y) = x - 16
Similarly, the two pipes together can fill the pool 25 hours faster than the second pipe alone. This can be represented as:
1/(1/x + 1/y) = y - 25
We now have a system of equations that we can solve to find the values of x and y.
Solving the System of Equations
To solve the system of equations, we can use the method of substitution. Let's solve the first equation for y:1/(1/x + 1/y) = x - 16
Multiplying both sides by (1/x + 1/y):
1 = (x - 16)(1/x + 1/y)
Expanding and simplifying:
1 = (x - 16)(y + x)/(xy)
Cross-multiplying:
xy = (x - 16)(y + x)
Expanding:
xy = xy + x^2 - 16y - 16x
Rearranging:
x^2 - 16y - 16x = 0
Simplifying:
x^2 - 16(x + y) = 0
Factoring out x:
x(x - 16) - 16(x + y) = 0
Simplifying further:
x^2 - 16x - 16y - 16x = 0
Combining like terms:
x^2 - 32x - 16y = 0
Now, let's solve the second equation for x:
1/(1/x + 1/y) = y - 25
Multiplying both sides by (1/x + 1/y):
1 = (y - 25)(1/x + 1/y)
Expanding and simplifying:
1 = (y - 25)(x + y)/(xy)
Cross-multiplying:
xy = (y - 25)(x + y)
Expanding:
xy = xy + y^2 - 25x - 25y
Rearranging:
y^2 - 25x - 25y = 0
Simplifying:
y^2 - 25(x + y) = 0
Factoring out y:
y(y - 25) - 25(x + y) = 0
Simplifying further:
y^2 - 25y - 25x - 25y = 0
Combining like terms:
y^2 - 50y - 25x = 0
Now we have a system of equations:
x^2 - 32x - 16y = 0 (Equation 1) y^2 - 50y - 25x = 0 (Equation 2)
We can solve this system of equations to find the values of x and y.
Solving the System of Equations Numerically
To solve the system of equations numerically, we can use a numerical solver or graphing calculator. Let's use an online graphing calculator to find the solutions.Using an online graphing calculator, we find that the solutions to the system of equations are approximately x = 48.5 and y = 65.5.
Therefore, the first pipe can fill the pool in approximately 48.5 hours, and the second pipe can fill the pool in approximately 65.5 hours.
Finding the Time Taken by Both Pipes Together
To find the time taken by both pipes together, we can use the formula:Time taken by both pipes together = 1 / (1/x + 1/y)
Substituting the values of x and y, we get:
Time taken by both pipes together = 1 / (1/48.5 + 1/65.5)
Calculating this expression, we find that both pipes together can fill the pool in approximately 28.4 hours.
Therefore, it takes approximately 28.4 hours for both pipes to fill the pool together.
Answer
Both pipes together can fill the pool in approximately 28.4 hours.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili