 
Вопрос задан 23.09.2018 в 17:14.
Предмет Алгебра.
Спрашивает Бовтрукевич Екатерина.
Срочно! Заранее спасибо!

 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Асауленко Вячеслав.
                
     Чтобы найти f(2 + x) надо в функцию f(x) вместо x подставить (x + 2).
((x+2)^2 + 6(x + 2) + 8)^3 (x^2 + 10x + 24)^3
f(2+x) = ----------------------------------- = ------------------------------< 0
6(x + 2) + √24 + √42 6x + 12 + √24 + √42
Чтобы f(2 + x) было меньше 0, числитель и знаменатель д.б. разного знака. В числителе можно опустить куб, т.к. возведение в третью степень не меняет знак. Поэтому можно решать такое неравенство:
x^2 + 10x +24
---------------------------- < 0
6x + 12 + √24 + √42
В числителе парабола, ось абсцисс она пересекает в точках:
x1 = -6 и x2 = -4 (определяется решением квадратного уравнения).
Значит, в интервале (-6; -4) числитель принимает отрицательные значения, а в интервалах (-∞; -6) и (-4; +∞) - положительные.
В знаменателе прямая, которая пересекает ось абсцисс в точке
x3 = -2 - (√24 + √42)/6 ≈ -13,4
Отсюда делаем вывод, что в интервалах (-∞; -2-(√24+√42)/6) и (-6; -4) числитель и знаменатель имеют разные знаки. Значит, их отношение отрицательное. Эти два интервала и будут решением неравенства f(2+x)<0
                                        ((x+2)^2 + 6(x + 2) + 8)^3 (x^2 + 10x + 24)^3
f(2+x) = ----------------------------------- = ------------------------------< 0
6(x + 2) + √24 + √42 6x + 12 + √24 + √42
Чтобы f(2 + x) было меньше 0, числитель и знаменатель д.б. разного знака. В числителе можно опустить куб, т.к. возведение в третью степень не меняет знак. Поэтому можно решать такое неравенство:
x^2 + 10x +24
---------------------------- < 0
6x + 12 + √24 + √42
В числителе парабола, ось абсцисс она пересекает в точках:
x1 = -6 и x2 = -4 (определяется решением квадратного уравнения).
Значит, в интервале (-6; -4) числитель принимает отрицательные значения, а в интервалах (-∞; -6) и (-4; +∞) - положительные.
В знаменателе прямая, которая пересекает ось абсцисс в точке
x3 = -2 - (√24 + √42)/6 ≈ -13,4
Отсюда делаем вывод, что в интервалах (-∞; -2-(√24+√42)/6) и (-6; -4) числитель и знаменатель имеют разные знаки. Значит, их отношение отрицательное. Эти два интервала и будут решением неравенства f(2+x)<0
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			