
Наибольшее отрицательное целое решение неравенства X^2>10


Ответы на вопрос

x²-10>0
(x-√10)(x+√10)>0 √10≈3,16
-∞_____+_____-3,16_____-_____3,16______+______+∞
x∈(-∞;-3,16)U(3,16;+∞) ⇒
Ответ: наибольшее отрицательное число =-4.



Для решения неравенства `x^2 > 10`, мы можем разбить его на два случая: когда `x` положительное и когда `x` отрицательное.
Решение для положительного `x`:
Если `x` положительное, то неравенство `x^2 > 10` означает, что квадрат `x` должен быть больше 10. Чтобы найти значения `x`, удовлетворяющие этому условию, мы можем извлечь квадратный корень из обеих частей неравенства. Однако, поскольку мы ищем только положительные значения `x`, мы должны взять только положительный корень:
``` x > sqrt(10) ```
Таким образом, для положительных значений `x`, решением неравенства `x^2 > 10` будет любое число `x`, которое больше положительного корня из 10.
Решение для отрицательного `x`:
Если `x` отрицательное, то квадрат `x` всегда будет положительным числом. Поэтому, неравенство `x^2 > 10` всегда будет истинным для отрицательных значений `x`. То есть, все отрицательные числа `x` удовлетворяют данному неравенству.
Итоговый ответ:
Таким образом, наибольшим отрицательным целочисленным решением неравенства `x^2 > 10` является любое отрицательное целое число. Для положительных значений `x`, решение будет `x > sqrt(10)`.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili