Вопрос задан 25.08.2018 в 08:17. Предмет Алгебра. Спрашивает Оналбекова Перизат.

Комплект из открытки,конверта,и блокнота стоит 50 руб.конверт на 25 руб дешевле блокнота и в 3 раза

дешевле открытки.сколько стоит конверт,открытка и блокнот?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чан Злата.
Х-конверт
х+25-блокнот
3х-открытка
х+х+25+3х=50
5х=25
х=25/5=5 руб- конверт
5+25=30р- блокнот
5*3=15р- открытка

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of the Prices

To determine the prices of the envelope, card, and notebook, let's assign variables to each item: - Let x be the price of the envelope. - Let y be the price of the card. - Let z be the price of the notebook.

According to the given information, we have the following equations: 1. The total price of the set is 50 rubles: x + y + z = 50. 2. The envelope is 25 rubles cheaper than the notebook: x = z - 25. 3. The envelope is 3 times cheaper than the card: x = y / 3.

To solve this system of equations, we can substitute the values from equations 2 and 3 into equation 1.

Solving the Equations

Let's substitute z - 25 for x in equation 1: (z - 25) + y + z = 50.

Now, let's substitute y / 3 for x in equation 1: (y / 3) + y + z = 50.

Simplifying the equation: (4y + 3z) / 3 = 50.

Multiplying both sides of the equation by 3 to eliminate the fraction: 4y + 3z = 150.

Now, we have a system of two equations: 1. z - 25 + y + z = 50 2. 4y + 3z = 150

We can solve this system of equations to find the values of y and z.

Solving the System of Equations

To solve the system of equations, we can use substitution or elimination. Let's use the elimination method.

Multiplying equation 1 by 4 to eliminate y: 4z - 100 + 4y + 4z = 200.

Simplifying the equation: 8z + 4y = 300.

Now, we have the following system of equations: 1. 8z + 4y = 300 2. 4y + 3z = 150

Multiplying equation 2 by 2 to eliminate y: 8y + 6z = 300.

Now, we have the following system of equations: 1. 8z + 4y = 300 2. 8y + 6z = 300

Subtracting equation 2 from equation 1 to eliminate y: (8z + 4y) - (8y + 6z) = 300 - 300.

Simplifying the equation: 2z - 4y = 0.

Dividing both sides of the equation by 2: z - 2y = 0.

Now, we have the following system of equations: 1. z - 2y = 0 2. 8y + 6z = 300

Let's solve this system of equations.

Solving the Updated System of Equations

Multiplying equation 1 by 6 to eliminate z: 6z - 12y = 0.

Now, we have the following system of equations: 1. 6z - 12y = 0 2. 8y + 6z = 300

Adding equation 1 to equation 2 to eliminate z: (6z - 12y) + (8y + 6z) = 0 + 300.

Simplifying the equation: 14z - 4y = 300.

Dividing both sides of the equation by 2: 7z - 2y = 150.

Now, we have the following system of equations: 1. 7z - 2y = 150 2. 8y + 6z = 300

Multiplying equation 1 by 3 to eliminate y: 21z - 6y = 450.

Now, we have the following system of equations: 1. 21z - 6y = 450 2. 8y + 6z = 300

Adding equation 1 to equation 2 to eliminate y: (21z - 6y) + (8y + 6z) = 450 + 300.

Simplifying the equation: 27z = 750.

Dividing both sides of the equation by 27: z = 27.78.

Now, we have the value of z (the price of the notebook).

Substituting z = 27.78 into equation 2 to find y: 8y + 6(27.78) = 300.

Simplifying the equation: 8y + 166.68 = 300.

Subtracting 166.68 from both sides of the equation: 8y = 133.32.

Dividing both sides of the equation by 8: y = 16.665.

Now, we have the value of y (the price of the card).

Substituting y = 16.665 into equation 3 to find x: x = y / 3 = 16.665 / 3 = 5.555.

Now, we have the value of x (the price of the envelope).

Final Answer

After solving the system of equations, we found the following prices: - The price of the envelope (x) is approximately 5.555 rubles. - The price of the card (y) is approximately 16.665 rubles. - The price of the notebook (z) is approximately 27.78 rubles.

Therefore, the envelope, card, and notebook cost approximately 5.555 rubles, 16.665 rubles, and 27.78 rubles, respectively.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос