
Вопрос задан 22.08.2018 в 23:45.
Предмет Алгебра.
Спрашивает Овчарова Катя.
Найдите вершину параболы y=x²-7x+6


Ответы на вопрос

Отвечает Хан Данияр.
Решение смотрите в приложении




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения вершины параболы, необходимо использовать формулу x = -b / (2a), где a и b - коэффициенты при x^2 и x соответственно.
В данном случае, у нас есть уравнение параболы y = x^2 - 7x + 6. Сравнивая его с общим уравнением параболы y = ax^2 + bx + c, мы видим, что a = 1, b = -7 и c = 6.
Теперь, используя формулу, мы можем найти x-координату вершины: x = -(-7) / (2*1) = 7 / 2 = 3.5
Далее, чтобы найти y-координату вершины, мы подставляем найденное значение x в уравнение параболы: y = (3.5)^2 - 7(3.5) + 6 = 12.25 - 24.5 + 6 = -6.25
Таким образом, вершина параболы y = x^2 - 7x + 6 имеет координаты (3.5, -6.25).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili