Вопрос задан 17.08.2018 в 08:23. Предмет Алгебра. Спрашивает Попов Владимир.

2x-3(x-1)>2+x

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Калайчев Григорис.
2x-3(x-1)\ \textgreater \ 2+x

2x-3x+3\ \textgreater \ 2+x

2x-3x-x\ \textgreater \ 2-3

-2x\ \textgreater \ -1

x\ \textless \  \frac{1}{2}

-------------(1/2)---------------
////////////////

Ответ:  (- ∞ ; \frac{1}{2} )

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим данное неравенство шаг за шагом.

Исходное неравенство: 2x - 3(x - 1) > 2 + x

Раскрытие скобок

Начнем с раскрытия скобок в выражении -3(x - 1):

2x - 3(x - 1) > 2 + x

2x - 3x + 3 > 2 + x

Сокращение подобных слагаемых

Далее, сократим подобные слагаемые на левой стороне и на правой стороне неравенства:

2x - 3x + 3 > 2 + x

-x + 3 > 2 + x

Перенос слагаемых

Теперь перенесем слагаемые с переменной на одну сторону, а слагаемые без переменной на другую сторону:

-x - x > 2 - 3

-2x > -1

Деление на отрицательное число

Для решения неравенства, где переменная умножена на отрицательное число, необходимо поменять направление неравенства при делении на отрицательное число. В данном случае, у нас есть -2x, поэтому необходимо поменять знак неравенства:

-2x < 1

Деление на положительное число

Теперь, чтобы выразить x, делим обе части неравенства на -2:

x > -1/2

Ответ

Итак, решением данного неравенства является x > -1/2. Это значит, что любое значение x, большее чем -1/2, удовлетворяет исходному неравенству.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос