
Корень 4 степени из 5/8 * корень 4 степени из 128 и это все деленное на корень 4 степени из 125.


Ответы на вопрос







Давайте решим эту задачу поэтапно.
Шаг 1: Вычислим корень четвертой степени из 5/8. Для этого возьмем 5/8 и возведем его в степень 1/4.
Корень четвертой степени из 5/8 = (5/8)^(1/4)
Шаг 2: Вычислим корень четвертой степени из 128. Для этого возьмем 128 и возведем его в степень 1/4.
Корень четвертой степени из 128 = 128^(1/4)
Шаг 3: Вычислим корень четвертой степени из 125. Для этого возьмем 125 и возведем его в степень 1/4.
Корень четвертой степени из 125 = 125^(1/4)
Шаг 4: Подставим полученные значения в исходное выражение и произведем вычисления.
Ответ: ((5/8)^(1/4) * 128^(1/4)) / (125^(1/4))
Для удобства расчетов, можно вычислить значения корней и затем произвести вычисления с числами:
((5/8)^(1/4) * 128^(1/4)) / (125^(1/4)) ≈ 0.589
Таким образом, ответ на ваше выражение примерно равен 0.589.



Я могу помочь вам решить этот математический вопрос. Корень 4 степени из 5/8 * корень 4 степени из 128 и это все деленное на корень 4 степени из 125 равен:
$$\sqrt[4]{\frac{5}{8}} \times \sqrt[4]{128} \div \sqrt[4]{125} = \frac{\sqrt[4]{5} \times \sqrt[4]{2^7}}{\sqrt[4]{5^3}} = \frac{\sqrt[4]{5} \times 2^{7/4}}{5^{3/4}} = \frac{2^{7/4}}{5} = \frac{4\sqrt{2}}{5} \approx 1.1314$$
Для решения этого вопроса я использовал свойство корня четвертой степени, которое говорит, что $\sqrt[4]{a \times b} = \sqrt[4]{a} \times \sqrt[4]{b}$, и свойство деления корней, которое говорит, что $\frac{\sqrt[4]{a}}{\sqrt[4]{b}} = \sqrt[4]{\frac{a}{b}}$. Я также использовал то, что $\sqrt[4]{2^4} = 2$ и $\sqrt[4]{5^4} = 5$. Вы можете найти больше информации о корнях четвертой степени [здесь]. Надеюсь, это было полезно.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili