Вопрос задан 08.08.2018 в 19:40. Предмет Алгебра. Спрашивает Кацемба Алина.

Какой промежуток является множеством решений неравенства 1 - 3х > 4 ? а) (-1; +∞) б) (1; +∞)

в) (-∞; -1) г) (-∞; 1)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Коцур Христя.
Решение во вложении.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Решение неравенства 1 - 3x > 4

Для того чтобы найти промежуток, который является множеством решений данного неравенства, мы должны решить неравенство относительно x.

1. Перенос константы: Начнем с переноса константы 1 на другую сторону неравенства: 1 - 1 - 3x > 4 - 1 -3x > 3

2. Деление на отрицательное число: Затем мы делим обе стороны на -3, при этом меняется знак неравенства: x < -1

Таким образом, множество решений данного неравенства - это все значения x, которые меньше -1. Другими словами, это промежуток (-∞; -1).

Ответ: в) (-∞; -1)

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос