
Лодка 30 км проходит за 3 часа по течению реки и 28 км за 4 часа против течения. Найдите скорость
течения реки и собственную скорость лодки

Ответы на вопрос

потом делишь 28/4=7км/ч
10-7=3-разница в скорости
пото 3/2=1.5-течение реки
и 8.5-скорость лодки



Problem Analysis
We are given that a boat travels 30 km downstream in 3 hours and 28 km upstream in 4 hours. We need to find the speed of the river's current and the speed of the boat.Downstream Speed Calculation
To find the speed of the boat downstream, we can use the formula: distance = speed × time. Let's denote the speed of the boat as B and the speed of the river's current as C. The boat's speed downstream will be the sum of its own speed and the speed of the current, so we have:30 km = (B + C) × 3 hours.
Upstream Speed Calculation
Similarly, to find the speed of the boat upstream, we can use the same formula: distance = speed × time. The boat's speed upstream will be the difference between its own speed and the speed of the current, so we have:28 km = (B - C) × 4 hours.
Solving the Equations
We now have a system of two equations with two unknowns (B and C). We can solve this system of equations to find the values of B and C.Let's solve the equations step by step:
From the first equation, we have: 30 = (B + C) × 3.
From the second equation, we have: 28 = (B - C) × 4.
We can simplify the equations further:
Equation 1: 30 = 3B + 3C. Equation 2: 28 = 4B - 4C.
Now, we can solve this system of equations using any method, such as substitution or elimination.
Solution
To solve the system of equations, we can use the elimination method. We'll multiply Equation 1 by 4 and Equation 2 by 3 to eliminate the variable C:Equation 1 (multiplied by 4): 120 = 12B + 12C. Equation 2 (multiplied by 3): 84 = 12B - 12C.
Adding the two equations together, we get: 120 + 84 = 12B + 12C + 12B - 12C.
Simplifying the equation, we have: 204 = 24B.
Dividing both sides of the equation by 24, we find: B = 8.5 km/h.
Now, we can substitute the value of B into one of the original equations to find the value of C. Let's use Equation 1:
30 = (8.5 + C) × 3.
Simplifying the equation, we have: 30 = 25.5 + 3C.
Subtracting 25.5 from both sides of the equation, we find: 4.5 = 3C.
Dividing both sides of the equation by 3, we find: C = 1.5 km/h.
Answer
Therefore, the speed of the river's current is 1.5 km/h and the speed of the boat is 8.5 km/h.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili