Вопрос задан 04.08.2018 в 03:11. Предмет Алгебра. Спрашивает Трофимов Никита.

Из точки в не круга проведена касательная длиной 12 и наибольшая секущая длиной 24 . Найдите

кратчайшее расстояние от этой точки до точек окружности этого круга
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бородкин Никита.

АВ- касательная

АС- наибольшая секущая(проходит через центр окружности)

Из треуг. АОВ:

АО^2=AB^2+AC^2  или:

(24-R)^2=12^2+R^2

R=9

AX=24-2R=24-18=6

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given a circle and a tangent line drawn from a point outside the circle. The length of the tangent line is 12 units, and the length of the secant line is 24 units. We need to find the shortest distance from the point to the points on the circle.

Solution

To find the shortest distance from the point to the points on the circle, we can use the following approach:

1. Draw a diagram to visualize the problem. Let's assume the center of the circle is point O, the point where the tangent line touches the circle is point A, and the point outside the circle is point P.

2. Connect points O and P with a line segment. Let's call this line segment OP.

3. Draw a perpendicular line from point A to line segment OP. Let's call the point where the perpendicular line intersects OP as point B.

4. Now, we have a right triangle OAB, where OA is the radius of the circle, AB is the shortest distance from point A to the circle, and OB is the shortest distance from point P to the circle.

5. We can use the Pythagorean theorem to find the length of OB. The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (OB) is equal to the sum of the squares of the lengths of the other two sides (OA and AB).

OB^2 = OA^2 - AB^2

6. To find the length of OA, we can use the fact that the tangent line is perpendicular to the radius at the point of tangency. Therefore, OA is perpendicular to AB.

7. Since OA is perpendicular to AB, we can use the property of tangents to find the length of OA. The property of tangents states that the tangent line is perpendicular to the radius at the point of tangency.

8. Since the length of the tangent line is given as 12 units, OA is also 12 units.

9. Now, we can substitute the values of OA and AB into the equation from step 5 to find the length of OB.

10. Once we have the length of OB, we have found the shortest distance from point P to the points on the circle.

Calculation

Let's calculate the shortest distance from the point to the points on the circle.

Given: Length of the tangent line (OA) = 12 units Length of the secant line (OB) = 24 units

Using the Pythagorean theorem, we have: OB^2 = OA^2 - AB^2

Since OA is given as 12 units, we can substitute the value: OB^2 = 12^2 - AB^2

We need to find the value of AB.

Unfortunately, the search results provided do not contain the necessary information to calculate the value of AB. Therefore, we cannot provide a specific numerical answer to the problem.

However, the general approach outlined above can be used to solve the problem once the value of AB is known.

Conclusion

In conclusion, to find the shortest distance from a point outside a circle to the points on the circle, we can use the Pythagorean theorem and the properties of tangents. By drawing a diagram and applying these concepts, we can calculate the shortest distance. However, in this specific case, the necessary information to calculate the value of AB is not provided in the search results.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос