Вопрос задан 09.12.2023 в 01:22. Предмет Алгебра. Спрашивает Аменов Жангелди.

262. Подайте у вигляді многочлена 4) (p² - 9p3 + 7p - 1) . 3p¹; 5) 7ab(2a²b - 3ab² - 3a³); 6

-6m²n(m²n-3mn²-4n³);8. (p²g³-2pg⁴+3p³)•5p³g²​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Августов Илья.

Ответ:

4) (p² - 9p³ + 7p - 1) * 3p¹

Розкриваючи дужки і множачаючи кожен член на 3p¹:

3p³ - 27p⁴ + 21p² - 3p¹

5) 7ab(2a²b - 3ab² - 3a³)

Розкриваючи дужки і множачаючи кожен член на 7ab:

14a³b² - 21a²b³ - 21a⁴b

6) -6m²n(m²n - 3mn² - 4n³)

Розкриваючи дужки і множачаючи кожен член на -6m²n:

6m⁴n² - 18m³n³ + 24m²n⁴

8) (p²g³ - 2pg⁴ + 3p³) * 5p³g²

Розкриваючи дужки і множачаючи кожен член на 5p³g²:

5p⁵g⁵ - 10p⁴g⁶ + 15p⁶g²

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1) 4(p² - 9p³ + 7p - 1) + 3p¹ + 5 = 4p² - 36p³ + 28p - 4 + 3p + 5 = 4p² - 36p³ + 31p + 1

2) 7ab(2a²b - 3ab² - 3a³) + 6 - 6m²n(m²n - 3mn² - 4n³) = 14a³b² - 21a²b³ - 21a⁴b - 6m²n³ + 18m³n² + 24m²n⁴ - 6 = -6m²n³ + 18m³n² + 24m²n⁴ + 14a³b² - 21a²b³ - 21a⁴b - 6

3) (p²g³ - 2pg⁴ + 3p³) • 5p³g² = 5p⁵g² - 10p²g⁴ + 15p⁴g³

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос