
X^2+32+48 теорема Виета


Ответы на вопрос

Ответ:
Р
Объяснение:
x^2+bx+32=0 при х=4
4^2+4b+32=0
4b=-48
b=-12
x^2-12x+32=0
D=b^2-4ac
D=144-128=16
x1=(12-4)/2=8/2=4
x2=(12+4)/2=16/2=8
Ответ:b=-12 x2=8



Quadratic Equation and Vieta's Theorem
The quadratic equation is typically represented as ax^2 + bx + c = 0, where a, b, and c are constants and x is the variable. Vieta's theorem provides a relationship between the roots of a quadratic equation and its coefficients.
Vieta's theorem states that for a quadratic equation ax^2 + bx + c = 0 with roots r1 and r2, the following relationships hold: - r1 + r2 = -b/a - r1 * r2 = c/a
Let's use Vieta's theorem to find the sum and product of the roots for the quadratic equation x^2 + 32x + 48 = 0.
The sum of the roots (r1 + r2) is given by -b/a, and the product of the roots (r1 * r2) is given by c/a.
Using the coefficients from the given quadratic equation: - a = 1 - b = 32 - c = 48
We can now apply Vieta's theorem to find the sum and product of the roots.
Sum of the roots: The sum of the roots is given by -b/a. Substituting the values: - Sum of the roots = -32/1 = -32
Product of the roots: The product of the roots is given by c/a. Substituting the values: - Product of the roots = 48/1 = 48
So, according to Vieta's theorem, for the quadratic equation x^2 + 32x + 48 = 0: - Sum of the roots = -32 - Product of the roots = 48
This demonstrates the application of Vieta's theorem to find the relationship between the roots and coefficients of a quadratic equation.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili