
Вопрос задан 31.07.2018 в 02:17.
Предмет Алгебра.
Спрашивает Устюжанин Влад.
Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которого равен 28?


Ответы на вопрос

Отвечает Никитина-Дикова Ольга.
Сторона правильного шестиугольника, вписанного в окружность с радиусом 28, тоже равна 28.
Так как шестиугольник можно разбить на 6 треугольников, у которых сторонами будут стороны самого шестиугольника и прямые, проведенные от центра шестиугольника к каждому из его углов. Эти маленькие треугольники будут равносторонними. Так как углы при вершине центра шестиугольника будут равны 360°:6=60°. А сам треугольник, считая основанием сторону шестиугольника, будет равнобедренным, так как сторонами будут радиусы описанной окружности. Так как в треугольнике сумма углов 180°, то на эти углы приходится 180°-60°=120°. Так как углы при основании равны, то 120°:2=60° - на каждый из оставшихся углов. Значит каждый из углов равен 60°. Это возможно в равностороннем треугольнике. Значит радиус равен стороне шестиугольника.
Ответ: 28.
Так как шестиугольник можно разбить на 6 треугольников, у которых сторонами будут стороны самого шестиугольника и прямые, проведенные от центра шестиугольника к каждому из его углов. Эти маленькие треугольники будут равносторонними. Так как углы при вершине центра шестиугольника будут равны 360°:6=60°. А сам треугольник, считая основанием сторону шестиугольника, будет равнобедренным, так как сторонами будут радиусы описанной окружности. Так как в треугольнике сумма углов 180°, то на эти углы приходится 180°-60°=120°. Так как углы при основании равны, то 120°:2=60° - на каждый из оставшихся углов. Значит каждый из углов равен 60°. Это возможно в равностороннем треугольнике. Значит радиус равен стороне шестиугольника.
Ответ: 28.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения длины стороны правильного шестиугольника, вписанного в окружность, радиус которого равен 28, мы можем воспользоваться формулой для нахождения длины стороны вписанного правильного многоугольника:
Длина стороны = 2 * радиус * sin(π/6)
где π/6 - это угол между любыми двумя соседними сторонами вписанного шестиугольника.
Подставляя значение радиуса (28) в формулу, получаем:
Длина стороны = 2 * 28 * sin(π/6) Длина стороны = 56 * sin(π/6) Длина стороны ≈ 56 * 0.5 Длина стороны ≈ 28
Таким образом, длина стороны правильного шестиугольника, вписанного в окружность с радиусом 28, равна 28.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili