
Решите уравнение. 2x^6=32x^4


Ответы на вопрос

X^6 = 16X^4
X^2 = 16
X1 = + 4
X2 = ( - 4 )



I can help you solve the equation.
To solve the equation, we need to find the values of x that make it true. We can start by dividing both sides by 2x^4, which gives us:
$$\frac{2x^6}{2x^4}=\frac{32x^4}{2x^4}$$
$$x^2=16$$
Then, we can take the square root of both sides, remembering that there are two possible solutions: one positive and one negative. We get:
$$x=\pm\sqrt{16}$$
$$x=\pm 4$$
Therefore, the equation has two solutions: x = 4 and x = -4. You can check these answers by plugging them back into the original equation and verifying that they make it true.
I hope this helps you understand how to solve the equation. If you want to learn more about algebra, you can check out some online resources, such as [Symbolab](https://ru.symbolab.com/solver/equation-calculator) or [Microsoft Math Solver](https://mathsolver.microsoft.com/ru/algebra-calculator).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili