
Автобус долає відстань 300км на 1 годину довше ніж автівка, швидкість якої на 10 км більше
швидкості автобуса. Знайдіть швидкості автівки і автобуса.

Ответы на вопрос

Problem Analysis
We are given that a bus covers a distance of 300 km in 1 hour longer than a car, and the car's speed is 10 km/h faster than the bus's speed. We need to find the speeds of the car and the bus.Solution
Let's assume the speed of the bus is x km/h. Since the car's speed is 10 km/h faster than the bus's speed, the speed of the car can be represented as x + 10 km/h.We are given that the bus covers a distance of 300 km in 1 hour longer than the car. This means that the time taken by the bus to cover the distance is 1 hour more than the time taken by the car.
We can use the formula time = distance / speed to set up the equation.
For the bus: 300 / x = t (where t is the time taken by the bus)
For the car: 300 / (x + 10) = t - 1 (where t - 1 is the time taken by the car, as it is 1 hour less than the bus)
Now, we can solve these two equations to find the values of x and t.
Calculation
Let's solve the equations:From the equation for the bus: 300 / x = t, we can rearrange it to find t in terms of x: t = 300 / x (Equation 1)
From the equation for the car: 300 / (x + 10) = t - 1, we can rearrange it to find t in terms of x: t = 300 / (x + 10) + 1 (Equation 2)
Now, we can equate the two expressions for t and solve for x:
300 / x = 300 / (x + 10) + 1
To simplify the equation, we can multiply both sides by x(x + 10) to eliminate the denominators:
300(x + 10) = 300x + x(x + 10)
Expanding and simplifying:
300x + 3000 = 300x + x^2 + 10x
Rearranging and simplifying:
x^2 + 10x - 3000 = 0
Now, we can solve this quadratic equation to find the value of x.
Using the quadratic formula: x = (-b ± sqrt(b^2 - 4ac)) / 2a, where a = 1, b = 10, and c = -3000, we can calculate the values of x.
Calculating the discriminant: b^2 - 4ac = 10^2 - 4(1)(-3000) = 100 + 12000 = 12100
Taking the square root of the discriminant: sqrt(12100) = 110
Using the quadratic formula:
x = (-10 ± 110) / 2(1)
Simplifying:
x = (-10 + 110) / 2 = 100 / 2 = 50 x = (-10 - 110) / 2 = -120 / 2 = -60
Since speed cannot be negative, we discard the negative value of x.
Therefore, the speed of the bus is 50 km/h.
The speed of the car can be calculated by adding 10 km/h to the speed of the bus:
Speed of car = 50 + 10 = 60 km/h
Answer
The speed of the bus is 50 km/h and the speed of the car is 60 km/h.

Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili