Вопрос задан 14.11.2023 в 07:58. Предмет Алгебра. Спрашивает Котов Степан.

Автобус долає відстань 300км на 1 годину довше ніж автівка, швидкість якої на 10 км більше

швидкості автобуса. Знайдіть швидкості автівки і автобуса.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a bus covers a distance of 300 km in 1 hour longer than a car, and the car's speed is 10 km/h faster than the bus's speed. We need to find the speeds of the car and the bus.

Solution

Let's assume the speed of the bus is x km/h. Since the car's speed is 10 km/h faster than the bus's speed, the speed of the car can be represented as x + 10 km/h.

We are given that the bus covers a distance of 300 km in 1 hour longer than the car. This means that the time taken by the bus to cover the distance is 1 hour more than the time taken by the car.

We can use the formula time = distance / speed to set up the equation.

For the bus: 300 / x = t (where t is the time taken by the bus)

For the car: 300 / (x + 10) = t - 1 (where t - 1 is the time taken by the car, as it is 1 hour less than the bus)

Now, we can solve these two equations to find the values of x and t.

Calculation

Let's solve the equations:

From the equation for the bus: 300 / x = t, we can rearrange it to find t in terms of x: t = 300 / x (Equation 1)

From the equation for the car: 300 / (x + 10) = t - 1, we can rearrange it to find t in terms of x: t = 300 / (x + 10) + 1 (Equation 2)

Now, we can equate the two expressions for t and solve for x:

300 / x = 300 / (x + 10) + 1

To simplify the equation, we can multiply both sides by x(x + 10) to eliminate the denominators:

300(x + 10) = 300x + x(x + 10)

Expanding and simplifying:

300x + 3000 = 300x + x^2 + 10x

Rearranging and simplifying:

x^2 + 10x - 3000 = 0

Now, we can solve this quadratic equation to find the value of x.

Using the quadratic formula: x = (-b ± sqrt(b^2 - 4ac)) / 2a, where a = 1, b = 10, and c = -3000, we can calculate the values of x.

Calculating the discriminant: b^2 - 4ac = 10^2 - 4(1)(-3000) = 100 + 12000 = 12100

Taking the square root of the discriminant: sqrt(12100) = 110

Using the quadratic formula:

x = (-10 ± 110) / 2(1)

Simplifying:

x = (-10 + 110) / 2 = 100 / 2 = 50 x = (-10 - 110) / 2 = -120 / 2 = -60

Since speed cannot be negative, we discard the negative value of x.

Therefore, the speed of the bus is 50 km/h.

The speed of the car can be calculated by adding 10 km/h to the speed of the bus:

Speed of car = 50 + 10 = 60 km/h

Answer

The speed of the bus is 50 km/h and the speed of the car is 60 km/h.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос