
Найдите номер n члена геометрической прогрессии ( bn ) если bn = 10 b1 = 640 q = 1 / 2


Ответы на вопрос





Understanding the problem
The problem states that we have a geometric progression with the first term b1 = 640 and the common ratio q = 1/2. We need to find the value of the nth term bn.
Solution
In a geometric progression, each term is obtained by multiplying the previous term by a constant called the common ratio.
The formula to find the nth term (bn) of a geometric progression is given by:
bn = b1 * q^(n-1)
where bn is the nth term, b1 is the first term, q is the common ratio, and n is the position of the term in the progression.
Let's substitute the given values into the formula to find the value of bn:
bn = 640 * (1/2)^(n-1)
We are given that b1 = 640, so let's substitute this value as well:
bn = 10 * b1 * (1/2)^(n-1)
Now, we have the formula to find the nth term of the geometric progression. To find the value of bn, we need to know the value of n.
If you have a specific value of n in mind, please provide it, and I will calculate the corresponding value of bn.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili