Вопрос задан 28.10.2023 в 09:27. Предмет Алгебра. Спрашивает Переверзева Настя.

Заполните пропуски в формулировке теоремы виета: Если x1 и x2-корни уравнения ax^2+bx+c=0 (а не

равно 0, то x1 + x2=_____ x1 x x2=_____. Даю 10 баллов.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Казмалов Макар.

Ответ:x1+x2 = -b/a;

x1*x2=c/a

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Я могу помочь вам с решением задач по математике.

Ваш вопрос связан с теоремой Виета, которая устанавливает связь между корнями и коэффициентами квадратного уравнения. Я нашел несколько источников, которые объясняют эту теорему и дают примеры ее применения. Вы можете посмотреть их по ссылкам ниже:

- [Теорема Виета: формула и примеры решений](https://www.webmath.ru/poleznoe/formules_19_5.php) - [Теорема Виета: формула, примеры, как решать, доказательство](https://skysmart.ru/articles/mathematic/teorema-vieta-formula) - [Теорема Вієта — Вікіпедія](https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%92%D1%96%D1%94%D1%82%D0%B0) - [Теорема Виета. Примеры и решение | Алгебра](https://izamorfix.ru/matematika/algebra/teorema_vieta.html) - [Теорема Виета: как её использовать, примеры решений и обратная теорема ...](https://www.uznaychtotakoe.ru/teorema-vieta/)

Чтобы ответить на ваш вопрос, я воспользуюсь формулой Виета для неприведенного квадратного уравнения $a x^ {2}+b x+c=0$, которая гласит:

$$x_ {1}+x_ {2}=-\\frac {b} {a}, x_ {1} x_ {2}=\\frac {c} {a}$$

Здесь $x_ {1}$ и $x_ {2}$ - корни уравнения, а $a$, $b$ и $c$ - его коэффициенты.

Используя эту формулу, мы можем заполнить пропуски в формулировке теоремы Виета:

Если $x_ {1}$ и $x_ {2}$ - корни уравнения $a x^ {2}+b x+c=0$ ($a$ не равно 0), то $x_ {1}+x_ {2}=-\\frac {b} {a}$, $x_ {1} x_ {2}=\\frac {c} {a}$.

Надеюсь, это поможет вам понять теорему Виета и ее применение. Если у вас есть еще вопросы, я буду рад ответить на них.теорема виета

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос