
Log2log√5(x-1)<1 ^-^ пжж


Ответы на вопрос

Ответ:
x от(1;6)
Объяснение:




It seems like you're asking about an inequality involving logarithms. Let's break down the expression and solve the inequality:
The given inequality is: log2(log(√5, x - 1)) < 1
First, simplify the inner logarithm: log(√5, x - 1) = log(x - 1) / log(√5) = log(x - 1) / (1/2 * log(5))
Now, rewrite the original inequality with this expression: log2(log(x - 1) / (1/2 * log(5))) < 1
To get rid of the logarithms and simplify further, you can rewrite it as an exponential equation: 2^(log(x - 1) / (1/2 * log(5))) < 2^1
Since 2^1 is just 2, you have: 2^(log(x - 1) / (1/2 * log(5))) < 2
Now, simplify further by getting rid of the base 2: 2^(log(x - 1) / (1/2 * log(5))) can be rewritten as (x - 1)^(1/(1/2 * log(5))) = (x - 1)^(2 * log(5))
So, the inequality becomes: (x - 1)^(2 * log(5)) < 2
To solve for x, you can take the square root of both sides: √((x - 1)^(2 * log(5))) < √2
This simplifies to: |x - 1|^(2 * log(5)) < √2
Now, raise both sides to the power of (1 / (2 * log(5))) to eliminate the exponent: |x - 1| < (√2)^(1 / (2 * log(5)))
Finally, simplify: |x - 1| < 5^(1 / (2 * log(5)))
This is the solution to the given inequality. Depending on the exact values of the logarithms involved, you may need to approximate the right side of the inequality to find a numeric solution for x.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili