
2 + sinxcosx = 2sinx + cosx


Ответы на вопрос




To solve the equation 2 + sin(x)cos(x) = 2sin(x) + cos(x), you can rearrange the terms and apply some trigonometric identities. Here's how to do it:
Move all the terms to one side of the equation to set it equal to zero: 2 + sin(x)cos(x) - 2sin(x) - cos(x) = 0
Now, let's use some trigonometric identities:
- Rewrite sin(x)cos(x) as (1/2)sin(2x).
- Rewrite 2sin(x) as sin(x)cos(x) + sin(x)cos(x) = 2sin(x)cos(x).
The equation now becomes: 2 + (1/2)sin(2x) - 2sin(x) - cos(x) = 0
Combine like terms: 2sin(x)cos(x) + (1/2)sin(2x) - 2sin(x) - cos(x) - 2 = 0
Now, let's factor out common terms: 2sin(x)cos(x) - 2sin(x) + (1/2)sin(2x) - cos(x) - 2 = 0
Factor out sin(x) from the first two terms and cos(x) from the last two terms: 2sin(x)(cos(x) - 1) + (1/2)sin(2x) - (cos(x) + 2) = 0
Notice that you can apply the double angle identity for sin(2x) = 2sin(x)cos(x): 2sin(x)(cos(x) - 1) + (1/2)(2sin(x)cos(x)) - (cos(x) + 2) = 0
Continue simplifying: 2sin(x)(cos(x) - 1) + sin(x)cos(x) - (cos(x) + 2) = 0
Combine like terms: 3sin(x)cos(x) - 2cos(x) - 2 = 0
Now, factor out common terms: cos(x)(3sin(x) - 2) - 2 = 0
Set each factor equal to zero: cos(x) = 0 (1) 3sin(x) - 2 = 0 (2)
Now, you have two equations to solve. Equation (1) yields cos(x) = 0, which means x = π/2 + kπ, where k is an integer.
For Equation (2), solve for sin(x): 3sin(x) = 2 sin(x) = 2/3
Now, find the values of x for sin(x) = 2/3. You can use the inverse sine function:
x = arcsin(2/3)
So, you have two sets of solutions:
- x = π/2 + kπ (where k is an integer)
- x = arcsin(2/3)
These are the solutions to the equation 2 + sin(x)cos(x) = 2sin(x) + cos(x).


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili