
1.4x^2-7х=0 2.-5х^2=0 3.4x^2-3x-1=0


Ответы на вопрос








To solve these quadratic equations, we can use the quadratic formula:
For a quadratic equation in the form: ax^2 + bx + c = 0, the quadratic formula is:
x = (-b ± √(b^2 - 4ac)) / (2a)
Let's apply this formula to the equations you've provided:
- 1.4x^2 - 7x = 0
In this equation, a = 1.4, b = -7, and c = 0. Plug these values into the quadratic formula:
x = (-(-7) ± √((-7)^2 - 4(1.4)(0))) / (2(1.4)) x = (7 ± √(49)) / (2.8) x = (7 ± 7) / 2.8
Now, we have two solutions:
x1 = (7 + 7) / 2.8 = 14 / 2.8 = 5 x2 = (7 - 7) / 2.8 = 0 / 2.8 = 0
So, the solutions for the first equation are x = 5 and x = 0.
- -5x^2 = 0
In this equation, a = -5, b = 0, and c = 0. Plug these values into the quadratic formula:
x = (0 ± √(0^2 - 4(-5)(0))) / (2(-5)) x = (0 ± √(0)) / (-10) x = (0 ± 0) / (-10)
Since we have a square root of zero, there is only one solution:
x = 0 / (-10) = 0
So, the solution for the second equation is x = 0.
- 4x^2 - 3x - 1 = 0
In this equation, a = 4, b = -3, and c = -1. Plug these values into the quadratic formula:
x = (-(-3) ± √((-3)^2 - 4(4)(-1))) / (2(4)) x = (3 ± √(9 + 16)) / 8 x = (3 ± √25) / 8 x = (3 ± 5) / 8
Now, we have two solutions:
x1 = (3 + 5) / 8 = 8 / 8 = 1 x2 = (3 - 5) / 8 = -2 / 8 = -1/4
So, the solutions for the third equation are x = 1 and x = -1/4.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili