2sin^2(3pi/2-x)-3sin(pi/2+x)-2=0
Ответы на вопрос
пусть cos x=t (|t|≤1) получаем
2t²-3t-2=0
D=b²-4ac=9+16=25
t1=(3+5)/4=2 - ∉ (|t|≤1)
t2=(3-5)/4=-1/2
Возвращаемся к замене
To solve the equation , we can use trigonometric identities to simplify it.
Let's start by making some substitutions to simplify the equation:
Use the identity to rewrite as :
Define a new variable so that the equation becomes:
Now, you have a quadratic equation in . To solve for , you can use the quadratic formula:
In this case, , , and . Plugging these values into the formula:
So, you have two possible values for :
Now that you have the values for , you can find :
For :
Using inverse sine (arcsin) to find :
\frac{\pi}{2} + x = \arcsin\left(\frac{3 + \sqrt{17}}{4}
x = \arcsin\left(\frac{3 + \sqrt{17}}{4} -
For :
Using inverse sine (arcsin) to find :
\frac{\pi}{2} + x = \arcsin\left(\frac{3 - \sqrt{17}}{4}
x = \arcsin\left(\frac{3 - \sqrt{17}}{4} -
These are the solutions for that satisfy the equation
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
