
(x-3)(3x+2)=(5x-4)(x-2)


Ответы на вопрос

(x-3)(3x+2)=(5x-4)(x-2)
3x²+2x-9x-6=5x²-10x-4x+8
3x²-7x-6=5x²-14x+8
3x²-7x-6-5x²+14x-8=0
-2x²+7x-14=0 | *(-1)
2x²-7x+14=0
D=b²-4ac=(-7)²-4*2*14=49-112=-63 (D<0 ⇔ решений нет)
Ответ: корней нет.



To solve the equation (x-3)(3x+2) = (5x-4)(x-2), you can follow these steps:
Expand both sides of the equation:
(x-3)(3x+2) = (5x-4)(x-2)
3x^2 + 2x - 9x - 6 = 5x(x) - 5x(2) - 4(x) + 8
Simplify and collect like terms on both sides:
3x^2 - 7x - 6 = 5x^2 - 10x - 4x + 8
Move all the terms to one side of the equation to set it equal to zero:
3x^2 - 7x - 6 - 5x^2 + 10x + 4x - 8 = 0
Combine like terms:
(3x^2 - 5x^2) + (-7x + 10x + 4x) + (-6 - 8) = 0
-2x^2 + 7x - 14 = 0
Divide the entire equation by -1 to make it easier to work with:
2x^2 - 7x + 14 = 0
You can now attempt to factor the quadratic equation. However, this quadratic doesn't factor easily into nice integer values. So, you can use the quadratic formula to solve for x:
The quadratic formula is: x = (-b ± √(b² - 4ac)) / (2a)
In this equation, a = 2, b = -7, and c = 14.
x = (-(-7) ± √((-7)² - 4(2)(14))) / (2(2))
x = (7 ± √(49 - 112)) / 4
x = (7 ± √(-63)) / 4
Since the discriminant (the value inside the square root) is negative, the quadratic equation has complex solutions:
x = (7 ± √(63)i) / 4
So, the solutions for the equation (x-3)(3x+2) = (5x-4)(x-2) are complex numbers:
x = (7 + √(63)i) / 4 x = (7 - √(63)i) / 4
These are the complex roots of the equation.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili