
Обчислити 1.)sin75 2.)cos105°


Ответы на вопрос

1)
используем формулу косинуса двойного угла:
2)
по формуле косинуса двойного угла:



Для обчислення значень синуса і косинуса цих кутів, ми можемо скористатися тригонометричними ідентичностями і знаходити їх на основі відомих значень синуса і косинуса для кутів 30°, 45° і 60°.
1.) sin(75°) = sin(30° + 45°)
За допомогою тригонометричної ідентичності sin(A + B) = sin(A)cos(B) + cos(A)sin(B):
sin(75°) = sin(30°)cos(45°) + cos(30°)sin(45°)
За відомими значеннями синуса і косинуса для кутів 30° і 45°:
sin(30°) = 0.5 cos(30°) = √3/2 sin(45°) = √2/2 cos(45°) = √2/2
Підставимо ці значення:
sin(75°) = (0.5)(√2/2) + (√3/2)(√2/2)
sin(75°) = (√2/4) + (√6/4)
sin(75°) = (√2 + √6) / 4
2.) cos(105°) = cos(60° + 45°)
За допомогою тригонометричної ідентичності cos(A + B) = cos(A)cos(B) - sin(A)sin(B):
cos(105°) = cos(60°)cos(45°) - sin(60°)sin(45°)
За відомими значеннями синуса і косинуса для кутів 60° і 45°:
cos(60°) = 0.5 sin(60°) = √3/2 cos(45°) = √2/2 sin(45°) = √2/2
Підставимо ці значення:
cos(105°) = (0.5)(√2/2) - (√3/2)(√2/2)
cos(105°) = (√2/4) - (√6/4)
cos(105°) = (√2 - √6) / 4
Отже,
1.) sin(75°) = (√2 + √6) / 4 2.) cos(105°) = (√2 - √6) / 4


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili