
2sin^2xcosx+1=2sin^2x+cosx


Ответы на вопрос

Ответ:
Ответ смотри во вложении




To solve the equation 2sin^2(x)cos(x) + 1 = 2sin^2(x) + cos(x), you can follow these steps:
First, move all the terms to one side of the equation to set it equal to zero: 2sin^2(x)cos(x) + 1 - 2sin^2(x) - cos(x) = 0
Combine like terms: 2sin^2(x)cos(x) - 2sin^2(x) - cos(x) + 1 = 0
Factor out common terms: sin^2(x)(2cos(x) - 2) - cos(x) + 1 = 0
Factor out a 2 from the first term: 2sin^2(x)(cos(x) - 1) - cos(x) + 1 = 0
Now, you can see that the expression (cos(x) - 1) can be further simplified: 2sin^2(x)(cos(x) - 1) - (cos(x) - 1) = 0
Factor out (cos(x) - 1) as a common factor: (cos(x) - 1)(2sin^2(x) - 1) = 0
Set each factor equal to zero and solve for x:
a) cos(x) - 1 = 0 cos(x) = 1
b) 2sin^2(x) - 1 = 0 2sin^2(x) = 1 sin^2(x) = 1/2
Now, we have two separate equations:
a) cos(x) = 1 b) sin^2(x) = 1/2
Let's solve them individually:
a) For cos(x) = 1: This equation is satisfied when x = 0 (since cos(0) = 1), and it repeats every 2π, so you can write the general solution as: x = 2πn, where n is an integer.
b) For sin^2(x) = 1/2: Take the square root of both sides: sin(x) = ±√(1/2)
The solutions for sin(x) = √(1/2) are x = π/4 + 2πn and x = 7π/4 + 2πn, where n is an integer.
The solutions for sin(x) = -√(1/2) are x = 3π/4 + 2πn and x = 5π/4 + 2πn, where n is an integer.
So, combining all the solutions:
x = 2πn (from the cos(x) = 1 equation) x = π/4 + 2πn x = 7π/4 + 2πn x = 3π/4 + 2πn x = 5π/4 + 2πn
where n is an integer. These are the solutions to the equation 2sin^2(x)cos(x) + 1 = 2sin^2(x) + cos(x).


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili