
Розв'яжіть рівняння: 1) (4х +1)(х-3) = 9;2) (x + 2)(х-3) - (2х -5)(х+3) = x(х-5);3) (6x -5)^2
+(3x-2)(3х + 2) = 36;4) (2x - 1)(4x^2 + 2x+1)-(2x + 5)(4x? - -7) = 41 + x^2.

Ответы на вопрос

Объяснение:



- (4x + 1)(x - 3) = 9
First, expand the left side of the equation:
4x^2 - 12x + x - 3 = 9
Combine like terms:
4x^2 - 11x - 3 = 9
Now, move 9 to the other side of the equation:
4x^2 - 11x - 3 - 9 = 0
Combine constants:
4x^2 - 11x - 12 = 0
Now, factor the quadratic equation:
(4x - 3)(x + 4) = 0
Set each factor equal to zero:
4x - 3 = 0 or x + 4 = 0
Solve for x in each equation:
For 4x - 3 = 0:
4x = 3 x = 3/4
For x + 4 = 0:
x = -4
So, the solutions to the equation are x = 3/4 and x = -4.
- (x + 2)(x - 3) - (2x - 5)(x + 3) = x(x - 5)
First, expand each part of the equation:
(x^2 - 3x + 2x - 6) - (2x^2 + 6x - 5x - 15) = x^2 - 5x
Combine like terms:
(x^2 - x - 6) - (2x^2 + x - 15) = x^2 - 5x
Now, distribute the negative sign:
x^2 - x - 6 - 2x^2 - x + 15 = x^2 - 5x
Combine like terms again:
(-x^2 - 2x - 6 + 15) = x^2 - 5x
Simplify the left side:
-x^2 - 2x + 9 = x^2 - 5x
Move all terms to one side of the equation:
0 = x^2 - 5x + x^2 + 2x - 9
Combine like terms:
0 = 2x^2 - 3x - 9
Now, let's solve this quadratic equation. We can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 2, b = -3, and c = -9. Plug these values into the formula:
x = (-(-3) ± √((-3)^2 - 4 * 2 * (-9))) / (2 * 2)
Simplify:
x = (3 ± √(9 + 72)) / 4
x = (3 ± √81) / 4
x = (3 ± 9) / 4
Now, calculate the two possible solutions:
- x = (3 + 9) / 4 = 12 / 4 = 3
- x = (3 - 9) / 4 = -6 / 4 = -3/2
So, the solutions to the equation are x = 3 and x = -3/2.
- (6x - 5)^2 + (3x - 2)(3x + 2) = 36
Let's expand and simplify the left side of the equation:
(6x - 5)^2 + (9x^2 - 4) = 36
Now, expand the squared term:
(36x^2 - 60x + 25) + (9x^2 - 4) = 36
Combine like terms:
36x^2 + 9x^2 - 60x - 4 + 25 = 36
45x^2 - 60x + 21 = 36
Move 36 to the other side of the equation:
45x^2 - 60x + 21 - 36 = 0
Combine constants:
45x^2 - 60x - 15 = 0
Divide the entire equation by 15 to simplify:
3x^2 - 4x - 1 = 0
Now, let's solve this quadratic equation. We can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 3, b = -4, and c = -1. Plug these values into the formula:
x = (-(-4) ± √((-4)^2 - 4 * 3 * (-1))) / (2 * 3)
Simplify:
x = (4 ± √(16 + 12)) / 6
x = (4 ± √28) / 6
Now, simplify the square root:
x = (4 ± 2√7) / 6
Divide the numerator and denominator by 2 to simplify further:
x = (2 ± √7) / 3
So, the solutions to the equation are x = (2 + √7) / 3 and x = (2 - √7) / 3.
- (2x - 1)(4x^2 + 2x + 1) - (2x + 5)(4x^2 - 7) = 41 + x^2
Let's first expand and simplify each part of the equation:
(2x - 1)(4x^2 + 2x + 1) = 8x^3 + 4x^2 + 2x - 4x^2 - 2x - 1
(2x + 5)(4x^2 - 7) = 8x^3 + 10x^2 - 14x + 20x^2 - 35
Now, subtract the second expression from the first:
(8x^3 + 4x^2 + 2x - 4x^2 - 2x - 1) - (8x^3 + 10x^2 - 14x + 20x^2 - 35) = 41 + x^2
Now, simplify the left side of the equation:
8x^3 + 4x^2 + 2x - 4x^2 - 2x - 1 - 8x^3 - 10x^2 + 14x - 20x^2 + 35 = 41 + x^2
Now, combine like terms on both sides of the equation:
8x^3 - 8x^3 + 4x^2 - 4x^2 + 2x - 2x - 10x^2 + 14x - 20x^2 = 41 + x^2 - 35
Simplify further:
0 = x^2 + 7
Now, subtract 7 from both sides:
x^2 = -7
Take the square root of both sides (remembering to consider both positive and negative roots):
x = ±√(-7)
Since the square root of a negative number results in a complex number, the solutions to this equation are complex numbers:
x = √7i and x = -√7i.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili