
(x - 6) (x + 1) < 0;


Ответы на вопрос

Ответ:
Объяснение:
(x - 6) (x + 1) < 0;
(x - 6)< 0; =>x < 6
(x + 1) > 0; =>x >- 1; => x∈(-1;6)
или
(x - 6)> 0; =>x > 6
(x + 1) < 0; => x <- 1; x∈(-∞;-1)∩(6;∞)= ∅
отв x∈(-1;6)



To solve the inequality , you can use the concept of interval notation and the properties of the product of two factors being less than zero.
First, find the critical points by setting each factor equal to zero and solving for : gives , and gives .
These critical points divide the number line into three intervals: , , and .
Choose a test point from each interval and plug it into the original inequality to determine the sign of the expression in each interval.
For the interval , choose : , which is positive.
For the interval , choose : , which is negative.
For the interval , choose : , which is positive.
Now, consider the signs of in each interval:
- In , is positive.
- In , is negative.
- In , is positive.
The inequality is satisfied when is negative, which occurs in the interval .
So, the solution to the inequality is in interval notation. This means that the values of that satisfy the inequality are between -1 and 6, exclusive.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili