Вопрос задан 29.09.2023 в 02:01. Предмет Алгебра. Спрашивает Юсупова Аделина.

1)y=|2-√|x||2)y=|x+3|-4​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To find the solutions to the given equations, let's work on them one by one:

Equation 1: y = |2 - √|x| |

Let's break this equation down step by step:

  1. Inside the inner absolute value: |x| is always non-negative, so it's never less than 0. Thus, √|x| is real and non-negative.

  2. Inside the outer absolute value: 2 - √|x| can also be negative or positive. To cover all possibilities, we'll split this into two cases.

    Case 1: (2 - √|x|) is positive:

    In this case, the absolute value doesn't change the value inside, so we have:

    y = 2 - √|x|

    To isolate x, we can square both sides (since √|x| is non-negative, squaring doesn't change the inequality):

    (y - 2)^2 = |x|

    Now, remember that |a| = a if a is non-negative. So, we can simplify further:

    (y - 2)^2 = x

    Case 2: (2 - √|x|) is negative:

    In this case, the absolute value makes it positive, so we have:

    y = -(2 - √|x|)

    This can be simplified as:

    y = √|x| - 2

    Now, let's square both sides (remember, squaring doesn't change the inequality for non-negative quantities):

    (y + 2)^2 = |x|

    Again, |a| = a if a is non-negative, so we can simplify:

    (y + 2)^2 = x

So, for Equation 1, you have two cases:

  1. Case 1: (y - 2)^2 = x
  2. Case 2: (y + 2)^2 = x

Equation 2: y = |x + 3| - 4

This equation is a bit simpler:

  1. Inside the absolute value: x + 3 can be either positive or negative.

    Case 1: (x + 3) is positive:

    In this case, the absolute value doesn't change the value inside, so we have:

    y = x + 3 - 4

    y = x - 1

    Case 2: (x + 3) is negative:

    In this case, the absolute value makes it positive, so we have:

    y = -(x + 3) - 4

    y = -x - 3 - 4

    y = -x - 7

So, for Equation 2, you have two cases:

  1. Case 1: y = x - 1
  2. Case 2: y = -x - 7

These are the solutions for the given equations, accounting for all possible cases.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос