Вопрос задан 27.09.2023 в 04:03. Предмет Алгебра. Спрашивает Анцупова Настя.

Спростити вираз (використати основні тригонометричні формули): ​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пищаев Глеб.

Ответ:

 \boxed{\ \ tga=\frac{sina}{cosa}\ \ ,\ \ 1+tg^2a=\dfrac{1}{cos^2a}\ \ }

\dfrac{tg^2a-1}{tg^2a+1}+tga=\dfrac{tg^2a-1}{\dfrac{1}{cos^2a}}+tga=\Big(\dfrac{sin^2a}{cos^2a}-1\Big)\cdot cos^2a+tga=\\\\\\=sin^2a-cos^2a+tga=-(\underbrace{cos^2a-sin^2a}_{cos2a})+tga=-cos2a+tga

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Звісно, я готовий допомогти зі спрощенням виразу, але потрібно мати сам вираз, який ви хочете спростити. Будь ласка, надайте мені вираз, і я намагатимусь спростити його за допомогою основних тригонометричних формул.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос