
A3=1, d=2, an=51n-? Sn-?


Ответы на вопрос

Ответ: 28. 672.
Объяснение:
Дано
a(n) - арифметическая прогрессия
a(3)=1;
d=2;
a(n)=51;
*******
n=? S(n)=?
Решение
a(n) = a1+(n-1)*d.
a(3) = a1+(3-1)*2 => 1;
a(1) = 1-4 = -3.
----------
-3+(n-1)*2=51;
n-1=(51+3)/2
n-1=27;
n=27+1=28.
-------
S(28) = 28(a1+a28)/2.
a(28) =51;
S(28)=28(-3+51)/2 = 28*48/2 = 14*48 = 672.



It appears that you are dealing with an arithmetic sequence, where A3 represents the third term, d is the common difference, an represents the nth term, and Sn represents the sum of the first n terms.
In your sequence, A3 is given as 1, and d is given as 2. To find the nth term (an) and the sum of the first n terms (Sn), we can use the following formulas:
nth Term (an) of an Arithmetic Sequence: an = A1 + (n - 1)d
Sum of the First n Terms (Sn) of an Arithmetic Sequence: Sn = (n/2) * [2A1 + (n - 1)d]
Given A3 = 1 and d = 2, let's calculate an and Sn:
- Calculate A1: A1 = A3 - 2d A1 = 1 - 2 * 2 A1 = 1 - 4 A1 = -3
Now that we have A1, we can use the formulas to find an and Sn for any value of n.
a. For an: an = -3 + (n - 1) * 2 an = -3 + 2n - 2 an = 2n - 5
b. For Sn: Sn = (n/2) * [2 * (-3) + (n - 1) * 2] Sn = (n/2) * [-6 + 2n - 2] Sn = (n/2) * [-8 + 2n]
Now you have the formulas for an and Sn in terms of n:
- an = 2n - 5
- Sn = (n/2) * [-8 + 2n]
You can use these formulas to find the nth term and the sum of the first n terms for any specific value of n in the arithmetic sequence.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili