
Cos^2(x-5p/2) -1/2sin2x=0


Ответы на вопрос

Вроде так.........................




To solve the trigonometric equation cos^2(x - (5π/2)) - (1/2)sin(2x) = 0, we can use some trigonometric identities and algebraic manipulation.
First, let's simplify the equation step by step:
- Use the double angle identity for sin(2x):
sin(2x) = 2sin(x)cos(x)
Now, substitute this into the equation:
cos^2(x - (5π/2)) - (1/2)(2sin(x)cos(x)) = 0
- Simplify further:
cos^2(x - (5π/2)) - sin(x)cos(x) = 0
- Use the trigonometric identity cos(θ - π/2) = -sin(θ):
(-sin(x))(cos(x)) - sin(x)cos(x) = 0
- Factor out -sin(x)cos(x):
-sin(x)cos(x)[1 + 1] = 0
- Combine the terms inside the square brackets:
-sin(x)cos(x)(2) = 0
Now, we have two factors: -sin(x)cos(x) = 0 and 2 = 0.
Let's solve each factor separately:
Factor 1: -sin(x)cos(x) = 0
This factor represents the product of two trigonometric functions. To find its solutions, we can set each factor equal to zero and solve for x separately:
a) -sin(x) = 0 This implies sin(x) = 0.
b) cos(x) = 0
Now, let's find the solutions for each of these equations:
a) sin(x) = 0 x = 0, π, 2π, 3π, ...
b) cos(x) = 0 x = π/2, 3π/2, 5π/2, ...
So, the solutions to the equation -sin(x)cos(x) = 0 are x = 0, π/2, π, 3π/2, 2π, 5π/2, 3π, ...
Factor 2: 2 = 0
This is not a valid equation since 2 is not equal to 0.
Therefore, the solutions to the original equation cos^2(x - (5π/2)) - (1/2)sin(2x) = 0 are x = 0, π/2, π, 3π/2, 2π, 5π/2, 3π, ...


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili