
(1/4)^x * (64/25)^x = (5/4)^2


Ответы на вопрос




To solve the equation , you can simplify the terms on both sides of the equation and then solve for . Here's how you can do it step by step:
First, rewrite the fractions with common bases:
Now, express the fractions with the same base. Since is greater than 1, you can rewrite it as and then invert it to get the base of :
Now, rewrite the equation with the common base of :
Next, simplify the exponents using the properties of exponents. When you multiply two numbers with the same base, you can add their exponents:
Now, simplify the exponents:
Now, we have the equation in a simplified form:
To solve for , take the logarithm of both sides to eliminate the exponent:
Now, you can use the properties of logarithms to bring down the exponents:
Now, isolate by dividing both sides by :
You can calculate the approximate value of using a calculator:
So, the approximate value of is approximately 1.096.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili