
(2sinx-1)(cosx-√2/2)=0


Ответы на вопрос




The equation you've provided is a trigonometric equation that needs to be solved for the variable x. To solve it, we'll need to find the values of x that satisfy the equation.
The equation is:
(2sinx - 1)(cosx - √2/2) = 0
To find the solutions, we need to consider when either of the factors is equal to zero, since the product of two factors is zero if at least one of the factors is zero.
Factor 1: 2sinx - 1 = 0 Solve for sinx: 2sinx = 1 sinx = 1/2
This occurs at two angles in the interval [0, 2π]: x = π/6 and x = 5π/6
Factor 2: cosx - √2/2 = 0 Solve for cosx: cosx = √2/2
This occurs at two angles in the interval [0, 2π]: x = π/4 and x = 7π/4
So, the solutions for the equation are x = π/6, x = 5π/6, x = π/4, and x = 7π/4. These are the values of x that make either of the factors (or both) in the equation equal to zero.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili