
(X-7)•(2+x)=3 ..……………


Ответы на вопрос

-5x+x²-14=3
-5x+x²-14=3
x²-5x-17=3
5x⁴+3+17
x⁴=20
x⁴=4



Let's solve the equation step by step:
Given equation: (X - 7) * (2 + x) = 3
First, distribute the terms: 2x + x^2 - 14 - 7x = 3
Combine like terms: x^2 - 5x - 14 = 3
Move the constant term to the other side of the equation: x^2 - 5x - 14 - 3 = 0
Simplify: x^2 - 5x - 17 = 0
Now, we have a quadratic equation in the form ax^2 + bx + c = 0, where: a = 1 b = -5 c = -17
We can solve this quadratic equation using the quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a
Substitute the values: x = (5 ± √((-5)^2 - 4 * 1 * -17)) / (2 * 1) x = (5 ± √(25 + 68)) / 2 x = (5 ± √93) / 2
So, the solutions are: x = (5 + √93) / 2 x = (5 - √93) / 2
These are the two possible values for x that satisfy the given equation.



Let's solve the equation step by step:
Given equation: (X-7) * (2+x) = 3
First, distribute the terms on the left side of the equation: 2x + x^2 - 7x - 7 = 3
Combine like terms: x^2 - 5x - 7 = 3
Now, move the constant term to the right side of the equation: x^2 - 5x - 7 - 3 = 0
Simplify the right side: x^2 - 5x - 10 = 0
This is a quadratic equation. To solve for x, you can use the quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a
In this equation, a = 1, b = -5, and c = -10. Plugging these values in: x = (5 ± √((-5)^2 - 4 * 1 * -10)) / (2 * 1) x = (5 ± √(25 + 40)) / 2 x = (5 ± √65) / 2
So, the solutions for x are: x = (5 + √65) / 2 x = (5 - √65) / 2
These are the two possible solutions for the given equation.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili