
-9x в квадрате +1 больше или меньше 0


Ответы на вопрос

Значит всегда положительный



To determine whether the expression -9x^2 + 1 is greater than or less than 0, we need to find the value of x that makes the expression either positive or negative.
Let's solve for x:
-9x^2 + 1 > 0
To make the expression greater than 0, the quadratic expression -9x^2 must be less than 1. Divide both sides by -9 (note that dividing by a negative number changes the inequality direction):
x^2 < 1/(-9)
x^2 < -1/9
However, there's an issue with this inequality. There's no real number value for x that would satisfy this inequality because the square of any real number is always greater than or equal to 0. Thus, there is no real solution to make the expression -9x^2 + 1 greater than 0.
On the other hand, to find when the expression is less than 0, we have:
-9x^2 + 1 < 0
To make the expression less than 0, the quadratic expression -9x^2 must be greater than 1. Again, divide both sides by -9:
x^2 > 1/(-9)
x^2 > -1/9
Since the square of any real number is greater than or equal to 0, there are infinite real values of x that satisfy this inequality. Thus, the expression -9x^2 + 1 is less than 0 for any real value of x.
In summary, the expression -9x^2 + 1 is less than 0 for all real values of x.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili