
Cosx/ 1+cos2x меньше 0


Ответы на вопрос




To determine when the expression is less than 0, we need to find the intervals where the expression is negative.
First, let's find the critical points where the expression is equal to 0 or undefined. The expression is undefined when the denominator . However, this never happens since is always non-negative (between 0 and 1), and thus is always positive.
Now, let's look at the sign of . The cosine function is positive in the first and fourth quadrants (0 to and to ) and negative in the second and third quadrants ( to and to ).
Next, let's analyze the sign of the denominator . Since is always non-negative, is always positive, and hence, it doesn't affect the overall sign of the expression.
Now, we need to combine the signs of the numerator and denominator. If the numerator and denominator have the same sign, the fraction is positive. If they have opposite signs, the fraction is negative.
Let's summarize:
When (first and fourth quadrants): since both the numerator and denominator are positive.
When (second and third quadrants): since the numerator is negative, and the denominator is positive.
So, the expression is less than 0 in the second and third quadrants of the unit circle ( to and to ).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili