
Sin2x + sin^2x + cos^2x = 1/2


Ответы на вопрос

Ответ:



To solve the trigonometric equation sin(2x) + sin^2(x) + cos^2(x) = 1/2, we'll need to use trigonometric identities to simplify the expression.
First, let's apply the double-angle identity for sine:
sin(2x) = 2 * sin(x) * cos(x)
Now, the equation becomes:
2 * sin(x) * cos(x) + sin^2(x) + cos^2(x) = 1/2
Next, recall the Pythagorean identity for sine and cosine:
sin^2(x) + cos^2(x) = 1
We can substitute this into the equation:
2 * sin(x) * cos(x) + 1 = 1/2
Now, let's isolate the term with the product of sine and cosine:
2 * sin(x) * cos(x) = 1/2 - 1
2 * sin(x) * cos(x) = -1/2
Now, we can use another identity for the product of sine and cosine:
sin(2x) = 2 * sin(x) * cos(x)
Therefore:
sin(2x) = -1/2
Now, we need to find the solutions for x. The sine function has a value of -1/2 at two specific angles in its domain: -30 degrees (-π/6 radians) and 210 degrees (7π/6 radians) (considering the unit circle).
So, we have:
2x = -30 degrees or 2x = 210 degrees
Now, we'll solve for x:
- For 2x = -30 degrees:
x = -30 degrees / 2 = -15 degrees
- For 2x = 210 degrees:
x = 210 degrees / 2 = 105 degrees
So, the solutions for the equation sin(2x) + sin^2(x) + cos^2(x) = 1/2 are:
x = -15 degrees and x = 105 degrees (in degrees)
or
x = -π/12 and x = 7π/12 (in radians)


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili