
2cos^2 3x+5sin 3x-4=0


Ответы на вопрос

2 - 2sin^2(3x) + 5sin(3x) - 4 = 0;
2sin^2(3x) - 5sin(3x) + 2 = 0;
Пусть sin(3x) = t. Тогда:
2t^2 - 5t + 2 = 0;
D = 25 - 4*2*2 = 9.
t = (5-3)/4 = 1/2;
ИЛИ
t = (5+3)/4 = 2.
Вернемся к синусу:
sin(3x) = 2. Это уравнение не имеет корней, так как область значений функции sin(t) - это промежуток [-1; 1].
sin(3x) = 1/2;
3x = (-1)^k * π/6 + πk, k∈Z;
x = (-1)^k * π/18 + πk/3, k∈Z.
Ответ: x = (-1)^k * π/18 + πk/3, k∈Z.



To solve the trigonometric equation 2cos^2(3x) + 5sin(3x) - 4 = 0, we need to find the values of x that satisfy the equation.
First, let's make use of the trigonometric identity: cos^2θ + sin^2θ = 1. Rearranging the equation:
2cos^2(3x) + 5sin(3x) - 4 = 0
2cos^2(3x) - 4 = -5sin(3x)
Divide both sides by 2:
cos^2(3x) - 2 = -2.5sin(3x)
Now, we can use the Pythagorean identity sin^2θ + cos^2θ = 1 to replace cos^2(3x):
1 - sin^2(3x) - 2 = -2.5sin(3x)
Simplify:
1 - sin^2(3x) = -2.5sin(3x) + 2
Rearrange to a quadratic equation:
sin^2(3x) + 2.5sin(3x) - 3 = 0
Now, we can solve this quadratic equation for sin(3x) and then find the values of x from there.
Let's introduce a substitution: Let y = sin(3x)
The equation now becomes:
y^2 + 2.5y - 3 = 0
To solve this quadratic equation, we can factor it:
(y + 3)(y - 1) = 0
Now set each factor to zero and solve for y:
y + 3 = 0 or y - 1 = 0
If y + 3 = 0, then y = -3
If y - 1 = 0, then y = 1
Now, recall the substitution y = sin(3x):
- sin(3x) = -3
- sin(3x) = 1
However, there is no real value for sin(3x) that equals -3, as the sine function is bound between -1 and 1. Thus, the first equation has no real solution.
Now, let's solve the second equation:
sin(3x) = 1
To find the solutions for this, we need to look at the values of sine for which it equals 1. The sine function reaches its maximum value of 1 at π/2 (90 degrees) and any integer multiple of 2π.
So, 3x = π/2 + 2kπ, where k is an integer.
Solving for x:
x = (π/2 + 2kπ) / 3, where k is an integer.
These are the solutions to the equation 2cos^2(3x) + 5sin(3x) - 4 = 0. Keep in mind that there may be other solutions beyond the given range depending on the domain of the problem.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili