
1)8x+3y=-21 4x-6y=-182)3x-2y=55x+4y=1


Ответы на вопрос

Решение способом сложения,
- 8х + 12у = 36
8х - 8х + 3у + 12у = 36 - 21
15у = 15
у = 1
4х - 6 = - 18
4х = - 12
Х = - 3
Ответ (-3 ; 1).
2) 3х - 2у = 5
5х + 4у = 1
Умножим первое уравнение на 2.
6х - 4у = 10
5х + 4у = 1
Складываем
6х + 5х = 11х
- 4 у + 4 у = 0
10 +1 = 11
Отсюда
11х + 0 = 11
х = 1
Чтобы найти у подставим значение х
5 * 1 + 4у = 1
4у= - 4
у= - 1
Ответ: (1; -1)



To solve the system of equations, we can use either the substitution method, elimination method, or matrix method. I'll use the elimination method to solve both systems of equations.
- 8x + 3y = -21 4x - 6y = -18
Step 1: Multiply the first equation by 2 to make the coefficients of y in both equations equal: 2(8x + 3y) = 2(-21) 16x + 6y = -42
Now, the two equations are: 16x + 6y = -42 4x - 6y = -18
Step 2: Add the two equations to eliminate y: (16x + 6y) + (4x - 6y) = -42 - 18 20x = -60
Step 3: Solve for x: x = -60 / 20 x = -3
Step 4: Substitute the value of x into one of the original equations to solve for y: 8x + 3y = -21 8(-3) + 3y = -21 -24 + 3y = -21
Step 5: Solve for y: 3y = -21 + 24 3y = 3 y = 3 / 3 y = 1
So, the solution to the first system of equations is x = -3 and y = 1.
- 3x - 2y = 5 5x + 4y = 1
To eliminate y, we'll multiply the first equation by 2 and the second equation by 1, so the coefficients of y become opposites:
Step 1: Multiply the first equation by 2 and the second equation by -2: 2(3x - 2y) = 2(5) -2(5x + 4y) = -2(1) 6x - 4y = 10 -10x - 8y = -2
Now, the two equations are: 6x - 4y = 10 -10x - 8y = -2
Step 2: Add the two equations to eliminate y: (6x - 4y) + (-10x - 8y) = 10 - 2 -4x - 12y = 8
Step 3: Divide the whole equation by -4 to solve for y: -4x - 12y = 8 (-4x - 12y) / -4 = 8 / -4 x + 3y = -2
Step 4: Solve for y: 3y = -2 - x y = (-2 - x) / 3
Now we have the expressions for x and y, but we don't have a unique solution since both variables depend on each other. This system of equations represents a line in a 2D plane, and there are infinite points (x, y) that satisfy the given equations.
Hence, the solution to the second system of equations is x + 3y = -2, and y = (-2 - x) / 3, where x can be any real number, and y depends on the value of x.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili