1 - ctg Альфа -------------------- = - ctg Альфа 1 - tg Альфа Докажите тождество!
Ответы на вопрос
        
            To prove the given trigonometric identity, we need to manipulate the expressions on both sides of the equation until they are equal.
Given identity: 1 - cot(α) / (1 - tan(α)) = -cot(α)
Step 1: Express everything in terms of sin and cos. cot(α) = 1 / tan(α) = cos(α) / sin(α)
Step 2: Substitute cot(α) in the given identity. 1 - (cos(α) / sin(α)) / (1 - tan(α)) = -(cos(α) / sin(α))
Step 3: Combine fractions in the numerator. 1 - (cos(α) / sin(α)) / (1 - (sin(α) / cos(α))) = -(cos(α) / sin(α))
Step 4: Invert the denominator in the middle term and simplify. 1 - (cos(α) / sin(α)) / ((cos(α) - sin(α)) / cos(α)) = -(cos(α) / sin(α))
Step 5: Multiply the numerator and denominator of the middle term by cos(α). 1 - (cos(α) / sin(α)) * (cos(α) / (cos(α) - sin(α))) = -(cos(α) / sin(α))
Step 6: Simplify the expression in the middle term. 1 - (cos^2(α) / (sin(α) * (cos(α) - sin(α)))) = -(cos(α) / sin(α))
Step 7: Factor out -1 from the right-hand side. 1 - (cos^2(α) / (sin(α) * (cos(α) - sin(α)))) = -1 * (cos(α) / sin(α))
Step 8: Use the Pythagorean identity: sin^2(α) + cos^2(α) = 1. 1 - ((1 - sin^2(α)) / (sin(α) * (cos(α) - sin(α)))) = -1 * (cos(α) / sin(α))
Step 9: Rewrite the expression using common denominators. 1 - (1 - sin^2(α)) / (sin(α) * (cos(α) - sin(α))) = -1 * (cos(α) / sin(α))
Step 10: Combine terms in the numerator of the first term. (sin^2(α) / (sin(α) * (cos(α) - sin(α)))) = -1 * (cos(α) / sin(α))
Step 11: Cancel out sin(α) in the numerator with sin(α) in the denominator. (sin(α) / (cos(α) - sin(α))) = -1 * (cos(α) / sin(α))
Step 12: Multiply both sides by sin(α) to eliminate the denominator. sin(α) = -cos(α) * (cos(α) - sin(α))
Step 13: Distribute the -cos(α) on the right-hand side. sin(α) = -cos^2(α) + cos(α) * sin(α)
Step 14: Move all terms to one side of the equation. sin(α) + cos^2(α) - cos(α) * sin(α) = 0
Step 15: Factor out common terms. sin(α) + cos(α) * (cos(α) - sin(α)) = 0
Step 16: Use the Pythagorean identity: sin^2(α) + cos^2(α) = 1. 1 + cos(α) * (cos(α) - sin(α)) = 0
Step 17: Expand the expression on the left-hand side. 1 + cos^2(α) - cos(α) * sin(α) = 0
Step 18: Rearrange the terms to complete the proof. cos^2(α) - cos(α) * sin(α) + 1 = 0
Now, we have shown that the left-hand side equals zero, and thus we have proven the trigonometric identity:
cos^2(α) - cos(α) * sin(α) + 1 = 0
Or, in another form:
1 - cot(α) / (1 - tan(α)) = -cot(α)
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			