Вопрос задан 28.07.2023 в 05:41. Предмет Алгебра. Спрашивает Галиев Ранис.

1){x3+y3=1 {x+y=1 2){x2+xy=12 {xy-y2=2 3)x3-y3=8 {x-y=2

Смотреть ответ Kislinki Kislinki 3х-3у=1 х=1-у 3(1-у)-3у=1 х=1-у 3-3у-3у+1=о 4-6у=о -6у=-4. :-6 у= 2:3(дробь) так типо ? х=1:3(дробь)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

It seems like you have a system of equations and you are trying to solve it. Let's go through each of the systems and find the values of x and y.

  1. {x^3 + y^3 = 1 {x + y = 1

This is a system of nonlinear equations, and solving it directly might be a bit challenging. Let's try a different approach to solve it.

Let's first solve the second equation for y in terms of x: y = 1 - x

Now, substitute this value of y into the first equation: x^3 + (1 - x)^3 = 1

Expand the equation: x^3 + (1 - x)(1 - x)(1 - x) = 1 x^3 + (1 - 3x + 3x^2 - x^3) = 1 x^3 - 3x^2 + 3x - 1 = 0

Now, we have a cubic equation. Solving cubic equations can be a bit more complicated, but we can observe that x = 1 is one of its solutions (by substituting x = 1 into the equation above).

Now, we can use synthetic division or other methods to find the quadratic factor of the equation:

(x - 1)(x^2 - 2x + 1) = 0

Now, we have two more possible solutions from the quadratic factor: x^2 - 2x + 1 = 0

Using the quadratic formula, we find: x = (2 ± √2^2 - 411) / 2 x = (2 ± √0) / 2 x = 1

So, in this case, x = 1 is the only real solution. Now, we can find y using the second equation: y = 1 - x y = 1 - 1 y = 0

Therefore, the solution to the first system is x = 1 and y = 0.

Let's move on to the second system:

  1. {x^2 + xy = 12 {xy - y^2 = 2

We can use substitution to solve this system as well. From the second equation, we can express y in terms of x: xy - y^2 = 2 y(x - y) = 2 y = 2 / (x - y)

Now, substitute this value of y into the first equation: x^2 + x(2 / (x - y)) = 12

Now, simplify the equation: x^2 + 2x / (x - y) = 12

Since we don't have a specific value for x, we can't find the exact solution yet. However, if you provide a specific value for x or if there is more information missing, we might be able to proceed with the solution.

Finally, let's take a look at the third system:

  1. {x^3 - y^3 = 8 {x - y = 2

This system can be solved easily by recognizing the difference of cubes in the first equation:

x^3 - y^3 = 8 (x - y)(x^2 + xy + y^2) = 8

Since we also have the second equation, x - y = 2, we can substitute it into the above equation: 2(x^2 + xy + y^2) = 8 x^2 + xy + y^2 = 4

We can further simplify this equation using the fact that x - y = 2: x^2 + xy + y^2 = (x - y)^2 + xy = 4

Now, we have x - y = 2 and x^2 + xy + y^2 = 4. By substituting x - y = 2 into the equation, we get:

2^2 + xy = 4 4 + xy = 4 xy = 0

Now we have the value of xy, but we still need to find the values of x and y. It seems that more information might be missing from this system as well.

In conclusion, we have partially solved the first system with x = 1 and y = 0. However, the other systems need more information to be solved completely. If there are additional constraints or missing equations, please provide them so we can continue with the solutions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос