
1){x3+y3=1 {x+y=1 2){x2+xy=12 {xy-y2=2 3)x3-y3=8 {x-y=2
Смотреть ответ Kislinki Kislinki 3х-3у=1 х=1-у 3(1-у)-3у=1 х=1-у 3-3у-3у+1=о 4-6у=о -6у=-4. :-6 у= 2:3(дробь) так типо ? х=1:3(дробь)

Ответы на вопрос

It seems like you have a system of equations that you are trying to solve. Let's go through each set of equations one by one:
x^3 + y^3 = 1 x + y = 1
x^2 + xy = 12 xy - y^2 = 2
x^3 - y^3 = 8 x - y = 2
For each set of equations, we'll solve them step by step:
- x^3 + y^3 = 1 x + y = 1
We can solve the second equation for x: x = 1 - y Now substitute this value of x into the first equation:
(1 - y)^3 + y^3 = 1
Expand (1 - y)^3 using the binomial formula:
1^3 - 3 * 1^2 * y + 3 * 1 * y^2 - y^3 + y^3 = 1
Simplify:
1 - 3y + 3y^2 - y^3 + y^3 = 1
The y^3 terms cancel out:
1 - 3y + 3y^2 = 1
Now, let's move all terms to one side of the equation:
3y^2 - 3y = 0
Factor out common terms:
3y(y - 1) = 0
Now, set each factor to zero and solve for y:
- y = 0
- y - 1 = 0 => y = 1
Now, we have two potential values for y. Let's find the corresponding values for x:
For y = 0: x = 1 - y = 1 - 0 = 1
For y = 1: x = 1 - y = 1 - 1 = 0
So, for the first set of equations, we have two solutions: (x = 1, y = 0) and (x = 0, y = 1).
Let's move on to the second set of equations:
- x^2 + xy = 12 xy - y^2 = 2
We can rearrange the first equation to solve for x:
x^2 + xy - 12 = 0
Now, let's use the quadratic formula to find the values of x:
x = (-b ± √(b^2 - 4ac)) / 2a
where a = 1, b = y, and c = -12.
Now, the second equation is:
xy - y^2 = 2
We can rearrange this to solve for x:
x = (y^2 + 2) / y
Now, we can equate the two expressions for x:
(-y ± √(y^2 - 4(-12))) / 2 = (y^2 + 2) / y
Simplify:
(-y ± √(y^2 + 48)) / 2 = (y^2 + 2) / y
Now, let's solve this equation for y:
(-y ± √(y^2 + 48)) / 2 = (y^2 + 2) / y
y^2 * (-y ± √(y^2 + 48)) = 2 * (y^2 + 2)
y^2 * (-y ± √(y^2 + 48)) = 2y^2 + 4
y^2 * (-1 ± √(1 + 48)) = 2y^2 + 4
y^2 * (-1 ± √49) = 2y^2 + 4
Now, we have two cases:
Case 1: (-1 + √49) = 6
y^2 * 6 = 2y^2 + 4
6y^2 = 2y^2 + 4
4y^2 = 4
y^2 = 1
y = ±√1
y = ±1
Now, find the corresponding values of x using the expression we found earlier:
x = (y^2 + 2) / y
For y = 1: x = (1^2 + 2) / 1 x = 3
For y = -1: x = ((-1)^2 + 2) / -1 x = -1
Case 2: (-1 - √49) = -8
y^2 * (-8) = 2y^2 + 4
-8y^2 = 2y^2 + 4
-10y^2 = 4
y^2 = -4/10
y = ±√(-4/10)
Since the square root of a negative number is not real, there are no real solutions for this case.
So, for the second set of equations, we have two solutions: (x = 3, y = 1) and (x = -1, y = 1).
Finally, let's solve the third set of equations:
- x^3 - y^3 = 8 x - y = 2
We can solve the second equation for x: x = 2 + y Now substitute this value of x into the first equation:
(2 + y)^3 - y^3 = 8
Expand (2 + y)^3 using the binomial formula:
8 + 12y + 6y^2 + y^3 - y^3 = 8
Simplify:
6y^2 + 12y = 0
Factor out common terms:
6y(y + 2) = 0
Now, set each factor to zero and solve for y:
- y = 0
- y + 2 = 0 => y = -2
Now, find the corresponding values of x using the expression we found earlier:
For y = 0: x = 2 + y = 2 + 0 = 2
For y = -2: x = 2 + y = 2 + (-2) = 0
So, for the third set of equations, we have two solutions: (x = 2, y = 0) and (x = 0, y = -2).
In summary, the solutions to the three sets of equations are as follows:
- (x = 1, y = 0) and (x = 0, y = 1)
- (x = 3, y = 1) and (x = -1, y = 1)
- (x = 2, y = 0) and (x = 0, y = -2)
Please note that some of these solutions involve fractions or complex numbers, so make sure to double-check the calculations if needed.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili