Вопрос задан 28.07.2023 в 05:41. Предмет Алгебра. Спрашивает Недбалюк Iра.

1){x3+y3=1 {x+y=1 2){x2+xy=12 {xy-y2=2 3)x3-y3=8 {x-y=2

Смотреть ответ Kislinki Kislinki 3х-3у=1 х=1-у 3(1-у)-3у=1 х=1-у 3-3у-3у+1=о 4-6у=о -6у=-4. :-6 у= 2:3(дробь) так типо ? х=1:3(дробь)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

It seems like you have a system of equations that you are trying to solve. Let's go through each set of equations one by one:

  1. x^3 + y^3 = 1 x + y = 1

  2. x^2 + xy = 12 xy - y^2 = 2

  3. x^3 - y^3 = 8 x - y = 2

For each set of equations, we'll solve them step by step:

  1. x^3 + y^3 = 1 x + y = 1

We can solve the second equation for x: x = 1 - y Now substitute this value of x into the first equation:

(1 - y)^3 + y^3 = 1

Expand (1 - y)^3 using the binomial formula:

1^3 - 3 * 1^2 * y + 3 * 1 * y^2 - y^3 + y^3 = 1

Simplify:

1 - 3y + 3y^2 - y^3 + y^3 = 1

The y^3 terms cancel out:

1 - 3y + 3y^2 = 1

Now, let's move all terms to one side of the equation:

3y^2 - 3y = 0

Factor out common terms:

3y(y - 1) = 0

Now, set each factor to zero and solve for y:

  1. y = 0
  2. y - 1 = 0 => y = 1

Now, we have two potential values for y. Let's find the corresponding values for x:

For y = 0: x = 1 - y = 1 - 0 = 1

For y = 1: x = 1 - y = 1 - 1 = 0

So, for the first set of equations, we have two solutions: (x = 1, y = 0) and (x = 0, y = 1).

Let's move on to the second set of equations:

  1. x^2 + xy = 12 xy - y^2 = 2

We can rearrange the first equation to solve for x:

x^2 + xy - 12 = 0

Now, let's use the quadratic formula to find the values of x:

x = (-b ± √(b^2 - 4ac)) / 2a

where a = 1, b = y, and c = -12.

Now, the second equation is:

xy - y^2 = 2

We can rearrange this to solve for x:

x = (y^2 + 2) / y

Now, we can equate the two expressions for x:

(-y ± √(y^2 - 4(-12))) / 2 = (y^2 + 2) / y

Simplify:

(-y ± √(y^2 + 48)) / 2 = (y^2 + 2) / y

Now, let's solve this equation for y:

(-y ± √(y^2 + 48)) / 2 = (y^2 + 2) / y

y^2 * (-y ± √(y^2 + 48)) = 2 * (y^2 + 2)

y^2 * (-y ± √(y^2 + 48)) = 2y^2 + 4

y^2 * (-1 ± √(1 + 48)) = 2y^2 + 4

y^2 * (-1 ± √49) = 2y^2 + 4

Now, we have two cases:

Case 1: (-1 + √49) = 6

y^2 * 6 = 2y^2 + 4

6y^2 = 2y^2 + 4

4y^2 = 4

y^2 = 1

y = ±√1

y = ±1

Now, find the corresponding values of x using the expression we found earlier:

x = (y^2 + 2) / y

For y = 1: x = (1^2 + 2) / 1 x = 3

For y = -1: x = ((-1)^2 + 2) / -1 x = -1

Case 2: (-1 - √49) = -8

y^2 * (-8) = 2y^2 + 4

-8y^2 = 2y^2 + 4

-10y^2 = 4

y^2 = -4/10

y = ±√(-4/10)

Since the square root of a negative number is not real, there are no real solutions for this case.

So, for the second set of equations, we have two solutions: (x = 3, y = 1) and (x = -1, y = 1).

Finally, let's solve the third set of equations:

  1. x^3 - y^3 = 8 x - y = 2

We can solve the second equation for x: x = 2 + y Now substitute this value of x into the first equation:

(2 + y)^3 - y^3 = 8

Expand (2 + y)^3 using the binomial formula:

8 + 12y + 6y^2 + y^3 - y^3 = 8

Simplify:

6y^2 + 12y = 0

Factor out common terms:

6y(y + 2) = 0

Now, set each factor to zero and solve for y:

  1. y = 0
  2. y + 2 = 0 => y = -2

Now, find the corresponding values of x using the expression we found earlier:

For y = 0: x = 2 + y = 2 + 0 = 2

For y = -2: x = 2 + y = 2 + (-2) = 0

So, for the third set of equations, we have two solutions: (x = 2, y = 0) and (x = 0, y = -2).

In summary, the solutions to the three sets of equations are as follows:

  1. (x = 1, y = 0) and (x = 0, y = 1)
  2. (x = 3, y = 1) and (x = -1, y = 1)
  3. (x = 2, y = 0) and (x = 0, y = -2)

Please note that some of these solutions involve fractions or complex numbers, so make sure to double-check the calculations if needed.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос