
Решить неравенство cosx>=0,9


Ответы на вопрос





To solve the inequality cos(x) >= 0.9, we need to find the range of x that satisfies the given condition. Let's proceed step by step:
First, find the solutions for cos(x) = 0.9: To do this, we can take the inverse cosine (arccos) of both sides of the equation: x = arccos(0.9)
Calculate the value of arccos(0.9): Using a calculator, we find that arccos(0.9) ≈ 25.84 degrees or 0.451 radians.
Determine the principal solution in the interval [0, 2π]: The cosine function is positive in the first and fourth quadrants. Since cos(x) = 0.9 is positive, we only need to consider the first quadrant. So, the principal solution lies between 0 and π/2 (0 and 90 degrees).
Find the general solution for the inequality: The general solution is given by: x ≥ arccos(0.9)
Convert the angle to degrees (if required): If the question asks for the solution in degrees, convert the radian value of arccos(0.9) to degrees: x ≥ 25.84 degrees
So, the solution to the inequality cos(x) ≥ 0.9 is x ≥ 25.84 degrees (or x ≥ 0.451 radians). This means any value of x greater than or equal to 25.84 degrees (or 0.451 radians) will satisfy the inequality.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili