
Довести (m^2+n^2)/2>=m+n-1


Ответы на вопрос

m^2+n^2-2m-2n+2=(m^2-2m+1)-1+(n^2-2n+1)-1+2=(m-1)^2+(n-1)^2
(m-1)^2>=0,(n-1)^2>=0,тогда (m-1)^2+(n-1)^2>=0.



To prove the inequality , we'll use algebraic manipulation. Let's go step by step:
Step 1: Expand the left-hand side (LHS) of the inequality: .
Step 2: Now, we need to prove .
Step 3: Subtract from both sides of the inequality: .
Step 4: Subtract from both sides of the inequality: .
Step 5: Bring all the terms to the left-hand side: .
Step 6: Now, we want to prove the expression on the left-hand side is greater than or equal to zero for all real values of and .
Step 7: Notice that the left-hand side can be factored as follows: .
Step 8: Simplify the squares and constants within the parentheses: .
Step 9: Since squares are always non-negative, both terms and are greater than or equal to zero.
Step 10: Therefore, the sum of these non-negative terms is also greater than or equal to zero: .
Step 11: This implies that .
Step 12: And since we have proved this for all real values of and , we have also proved the original inequality
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili