Вопрос задан 24.07.2023 в 10:46. Предмет Алгебра. Спрашивает Ким Анастасия.

В треугольнике ABC проведена медиана AE. Найдите BC, если известно что AB=27 см, AC=21,9 см,

BE=16,8 см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Киселёва Виктория.
Если в данном случае треугольник ABC является равнобедренным, то сторона BC будет равна стороне AB.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти длину стороны BC треугольника ABC, построим следующую картину:

Пусть M - точка пересечения медианы AE и стороны BC. Тогда, так как медиана делит сторону на две равные части, BM = MC.

Мы также знаем длины сторон AB и AC треугольника:

AB = 27 см AC = 21.9 см

И длину отрезка BE:

BE = 16.8 см

Теперь, чтобы найти BC, нужно применить теорему медианы, которая гласит:

BM = (1/2) * sqrt(2 * (AB^2 + AC^2) - BC^2)

где BM - половина стороны BC, так как медиана делит сторону пополам.

Также, по теореме Пифагора, известно, что для треугольника ABC:

AC^2 + BC^2 = AB^2

Теперь подставим известные значения и решим уравнение:

BM = (1/2) * sqrt(2 * (27^2 + 21.9^2) - BC^2)

21.9^2 + BC^2 = 27^2

Теперь найдем длину BC:

21.9^2 + BC^2 = 27^2

BC^2 = 27^2 - 21.9^2

BC^2 = 729 - 478.41

BC^2 = 250.59

BC = sqrt(250.59)

BC ≈ 15.83 см

Таким образом, длина стороны BC треугольника ABC составляет около 15.83 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос