
Найти dz/dx и dz/dy для y=cos^2x/2y


Ответы на вопрос




To find dz/dx and dz/dy for the given expression y = cos^2(x)/2y, we'll first rewrite the equation in a more suitable form. Then, we can find the derivatives with respect to x and y separately.
Step 1: Rewrite the equation to isolate z: Start with the given equation: y = cos^2(x)/(2y)
Multiply both sides by 2y to get rid of the fraction on the right side: 2y^2 = cos^2(x)
Now, we can express z in terms of x and y: z = 2y^2 - cos^2(x)
Step 2: Find dz/dx and dz/dy:
Now, we'll differentiate z with respect to x and y.
a) dz/dx: To find dz/dx, we differentiate z with respect to x, treating y as a constant: dz/dx = d/dx (2y^2 - cos^2(x))
The derivative of 2y^2 with respect to x is 0, as it's a constant with respect to x.
Now, differentiate cos^2(x) with respect to x using the chain rule: d/dx (cos^2(x)) = -2cos(x)sin(x)
So, dz/dx = 0 - (-2cos(x)sin(x)) = 2cos(x)sin(x).
b) dz/dy: To find dz/dy, we differentiate z with respect to y, treating x as a constant: dz/dy = d/dy (2y^2 - cos^2(x))
The derivative of 2y^2 with respect to y is 4y.
The derivative of cos^2(x) with respect to y is 0 since cos^2(x) doesn't depend on y.
So, dz/dy = 4y - 0 = 4y.
Therefore, the derivatives are: dz/dx = 2cos(x)sin(x) dz/dy = 4y


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili